Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22040261-6    https://doi.org/10.11896/cldb.22040261
  金属与金属基复合材料 |
Si含量对10CrNiCuSi钢氧化铁皮的影响
潘涛, 赵蕾, 柴希阳*, 罗小兵, 柴锋, 杨才福
钢铁研究总院工程用钢研究所,北京 100081
Effect of Silicon Content on the Oxide Scale of 10CrNiCuSi Steel
PAN Tao, ZHAO Lei, CHAI Xiyang*, LUO Xiaobing, CHAI Feng, YANG Caifu
Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
下载:  全 文 ( PDF ) ( 23780KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善10CrNiCuSi船体钢表面质量,设计了Si含量为0.08%~0.65%的试验钢,研究了其在1 150~1 250 ℃下的高温氧化行为,利用弯曲试验评价了试验钢氧化铁皮的剥离性,并讨论分析了Si含量对富Si反应产物与氧化增重的影响。结果表明:在低于Fe2SiO4-FeO共晶温度条件下,随着Si含量增加,固态Fe2SiO4含量增加,其对氧化反应的抑制程度增加,氧化增重呈现下降趋势;在高于Fe2SiO4-FeO共晶温度条件下,随着Si含量在0.20%~0.65%范围内增加,液相含量增加,加快了氧化反应,氧化增重呈现上升趋势。富Si产物的液化现象对氧化铁皮的剥离性具有重要影响,富Si液相浸入基体和FeO中,形成锚状或网格状形态,造成内氧化层与基体界面平直度严重恶化,导致氧化铁皮难以剥离。随着Si含量的增加,氧化铁皮剥离难度进一步加大。温度和Si含量是改善10CrNiCuSi钢表面质量的关键因素,根据本实验研究结果,建议控制Si含量不高于0.20%,加热温度不高于1 150 ℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘涛
赵蕾
柴希阳
罗小兵
柴锋
杨才福
关键词:  10CrNiCuSi钢  Si含量  Fe2SiO4-FeO  液相  剥离性    
Abstract: In order to improve the surface quality of 10CrNiCuSi shipbuilding steel, the experimental steel with Si content ranging from 0.08% to 0.65% was designed. The high-temperature oxidation behavior of the steel at 1 150—1 250 ℃ was studied and the strippability of the oxide scales was evaluated by bend tests. The influence of Si content on Si-riched reaction products and oxidizing weight was discussed and analyzed. The results show that when the oxidizing temperature is lower than Fe2SiO4-FeO eutectic temperature, the oxidizing weight drops down with the increase of Si content, which leads to the formation of more Fe2SiO4 solid phase, acting to inhibit the oxidation reaction. When the oxidizing temperature is higher than Fe2SiO4-FeO eutectic temperature, the oxidizing weight increases with the increase of Si content at the range of 0.20%—0.65%, owing to the Si-rich liquid phase accelerating the oxidation reaction. The liquefaction phenomenon of Si-rich products has an important influence on the strippability of the oxide scales. The liquified Si-rich phase is immersed into the substrate and FeO, forming an anchor-like or grid-like morphology, which seriously deteriorates the flatness of the interface between the internal oxide layer and the substrate, making it difficult for the scales to exfoliate from the substrate. The increase of Si content and consequent liquefied phase worsens the strippability of the scales from the substrate. The experimental results show that temperature and Si content are significant factors to improve the surface quality of 10CrNiCuSi steel and it is recommended that the Si content should be controlled not higher than 0.20%, and the heating temperature should be not higher than 1 150 ℃.
Key words:  10CrNiCuSi steel    Si content    Fe2SiO4-FeO    liquefied phase    strippability
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TG156.1  
基金资助: 山东省重点研发计划(2020CXGC01305)
通讯作者:  *柴希阳,钢铁研究总院工程用钢研究所高级工程师。2011年武汉科技大学金属材料工程专业本科毕业,2014年钢铁研究总院材料学硕士毕业,2018年清华大学材料科学与工程专业博士毕业,然后进入钢铁研究总院工程用钢研究所工作至今。目前主要从事船体结构钢、双金属复合材料、微合金化、控轧控冷、高温氧化等方面的研究工作。发表论文20余篇,包括Material Letters、Journal of Iron and Steel Research、《稀有金属材料工程》《工程学报》等。 chaixiyang0728@163.com   
作者简介:  潘涛,钢铁研究总院工程用钢研究所教授级高级工程师。2000年北京科技大学材料科学与工程专业本科毕业,2003年清华大学材料学硕士毕业,2015年钢铁研究总院材料学博士毕业,2003年硕士毕业后进入钢铁研究总院工程用钢研究所工作至今。目前主要从事船舶与海工用钢、微合金化、材料热动力学等方面的研究工作。发表论文60余篇,包括Materials Science and Engineering A、Science Bulletins、Rare Metals、《金属学报》等。
引用本文:    
潘涛, 赵蕾, 柴希阳, 罗小兵, 柴锋, 杨才福. Si含量对10CrNiCuSi钢氧化铁皮的影响[J]. 材料导报, 2023, 37(19): 22040261-6.
PAN Tao, ZHAO Lei, CHAI Xiyang, LUO Xiaobing, CHAI Feng, YANG Caifu. Effect of Silicon Content on the Oxide Scale of 10CrNiCuSi Steel. Materials Reports, 2023, 37(19): 22040261-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040261  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22040261
1 Zhao L, Li J M, Mu X B, et al. Heat Treatment of Metals, 2022, 47(1), 6(in Chinese).
赵蕾, 李建铭, 穆晓彪, 等. 金属热处理, 2022, 47(1), 6.
2 Sun W, Tieu A K, Jiang Z, et al. Journal of Materials Processing Technology, 2004, 155, 1307.
3 Yu W, Wang J, Liu T. Steel Rolling, 2017, 34(3), 6(in Chinese).
余伟, 王俊, 刘涛. 轧钢, 2017, 34(3), 6.
4 Song E J, Suh D W, Bhadeshia H. Ironmaking & Steelmaking, 2012, 39(8), 599.
5 Yuan Q, Xu G, Zhou M, et al. Metals, 2016, 6(4), 94.
6 Fukagawa T, Okada H, Maehara Y. ISIJ International, 1994, 34(11), 906.
7 Okada H, Fukagawa T, Ishihara H, et al. ISIJ International, 1995, 35(7), 886.
8 Taniguchi S, Yamamoto K, Megumi D, et al. Materials Science and Engineering A, 2001, 308(1-2), 250.
9 Liu X J. Research on high temperature oxidation behavior and controlling technology and application of oxide scale of hot-rolled non-oriented silicon steel. Ph. D. Thesis, Northeastern University, China, 2014 (in Chinese).
刘小江. 热轧无取向硅钢高温氧化行为及其氧化铁皮控制技术的研究与应用. 博士学位论文, 东北大学, 2014.
10 Yang Y L, Yang C H, Lin S H, et al. Materials Chemistry and Physics, 2008, 112(2), 566.
11 Wang S T, Li M, Zhu L X, et al. Hot Working Technology, 2011, 40(16), 50(in Chinese).
王松涛, 李敏, 朱立新, 等. 热加工工艺, 2011, 40(16), 50.
12 Yu Y, Wang C, Wang L, et al. Steel Rolling, 2016, 33(2), 10 (in Chinese).
于洋, 王畅, 王林, 等. 轧钢, 2016, 33(2), 10.
13 Zeng L. Study on phase diagram of FeO-V2O3-SiO2-Al2O3 system.Master' Thesis, Chongqing University, China, 2013 (in Chinese).
曾利. FeO-V2O3-SiO2-Al2O3四元系相图研究. 硕士学位论文, 重庆大学, 2013.
14 Yuan Q, Xu G, Zhou M, et al. Metals, 2017, 7(2), 37.
15 Sun B, You H G, Hao M X, et al. Journal of Shenyang University, 2019, 31(4), 263 (in Chinese).
孙彬, 尤宏广, 郝明欣, 等. 沈阳大学学报, 2019, 31(4), 263.
16 Asai T, Soshiroda T, Miyahara M. ISIJ International, 1997, 37(3), 272.
17 Lu G F, Gu J Z, Wu G Y. Acta Metallurgica Sinica, 1985, 21(5), 31(in Chinese).
陆关福, 顾建忠, 吴光亚. 金属学报, 1985, 21(5), 31.
18 Liu Y Z, Yang C F, Chai F, et al. Materials Science and Technology, 2013, 21(6), 78(in Chinese).
刘翊之, 杨才福, 柴锋, 等. 材料科学与工艺, 2013, 21(6), 78.
19 Melfo W, Bolt H, Rijnders M, et al. ISIJ International, 2013, 53(5), 866.
20 Suárez L, Rodríguez-Calvillo P, Houbaert Y, et al. Corrosion Science, 2010, 52(6), 2044.
[1] 杜伟, 强军锋, 余竹焕, 高炜, 阎亚雯, 王晓慧, 刘旭亮. 电子封装用纳米复合焊膏的研究进展[J]. 材料导报, 2023, 37(19): 22010113-11.
[2] 李小龙, 王坦, 左孝青, 代彪, 周芸. 液相网络及相对密度对SiCp/2024复合材料显微组织与力学性能的影响[J]. 材料导报, 2023, 37(14): 21120017-6.
[3] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[4] 王昌进, 张赛, 徐静磊. 燃料电池气体扩散层的分形模型研究[J]. 材料导报, 2022, 36(13): 20120143-6.
[5] 刘璇, 徐红艳, 李红, 徐菊, Hodúlová Erika, Kovaříková Ingrid. 应用于功率芯片封装的瞬态液相扩散连接材料与接头可靠性研究进展[J]. 材料导报, 2021, 35(19): 19116-19124.
[6] 崔田路, 曹中秋, 贾中秋, 于佳蕊, 徐欢, 张轲, 王艳. 块体纳米晶Fe-50Cu合金在H2SO4溶液中的电化学腐蚀行为[J]. 材料导报, 2020, 34(20): 20096-20102.
[7] 柴禄, 侯金保, 郎波. 单晶高温合金过渡液相扩散焊等温凝固动力学研究[J]. 材料导报, 2020, 34(18): 18131-18134.
[8] 车春霞, 蔡小霞, 温翯, 苟尕莲, 薛文利, 韩伟, 梁玉龙, 张峰, 景喜林. 液相法制备活性氧化铝粉体的研究现状[J]. 材料导报, 2019, 33(Z2): 147-149.
[9] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[10] 谢敏, 王梅丰, 戴晓琴, 雷剑波, 王春霞, 周圣丰. 综论偏晶合金的制备技术:外场下凝固、快速凝固及激光技术[J]. 材料导报, 2019, 33(3): 490-499.
[11] 刘贺, 傅仁利, 何钦江, 李国郡, 王贺. SiO2-BPO4/LMZBS低温烧结玻璃陶瓷及其微波介电性能[J]. 材料导报, 2019, 33(18): 3152-3155.
[12] 易帅, 曾鲁举, 邓丽娜, 薛飞, 谢金莉, 刘艳改, 房明浩, 吴小文, 黄朝晖. 液相浸渗法制备CaAl12O19/(MgAl2O4-Al2O3)复相陶瓷[J]. 材料导报, 2019, 33(18): 3166-3169.
[13] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[14] 闫存富, 李淑娟. 陶瓷材料低温挤压自由成形工艺液相迁移研究[J]. 《材料导报》期刊社, 2018, 32(4): 636-640.
[15] 付正容,王修昌,金青林,谭军. 多孔非晶合金及其复合材料的制备技术研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 473-482.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed