Investigation on the Strength and Freeze-Thaw Resistance of Pervious Concrete Based on the Properties of Cement Paste
LI Hui1,*, YANG Jie1, FU Kaimin2, ZHANG Yi1, ZHANG Li1, ZHU Yaoting3, YU Bo4
1 The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China 2 Center for Technology Innovation and Development, Jiangxi Ganyue Expressway Co., Ltd., Nanchang 330000, China 3 Jiangxi Ganjiang New Area Development Investment Group Co., Ltd., Nanchang 330000, China 4 Jiangxi Long Span Bridge & Tunnel Research and Design Institute Co., Ltd., Nanchang 330000, China
Abstract: The strength and the freeze-thaw resistance of pervious concrete are key properties for its application in heavy-load traffic roads and cold regions. The workability, the strength and the interfacial adhesion of cement paste as well as the strength and the freeze-thaw resistance of pervious concrete were investigated, and the main factors affecting the performance of pervious concrete were revealed. The results show that the wor-kability of paste and pervious concrete can be evaluated by the maximum paste-aggregate ratio, and good workability of pervious concrete can be obtained when the maximum paste-aggregate ratio is close to the designed paste-aggregate ratio. The adhesive damage occurs whether freeze-thaw tests are performed on the unmodified paste or not. On the contrary, the pull-off strength of the modified paste is 67% to 156% higher than that of the unmodified paste without freeze-thaw tests, with cohesive damage occurring, while it is significantly reduced after freeze-thaw tests,with both cohesive damage and adhesive damage appearing. The compressive strength of the pervious concrete with good workability is 38.2—40.3 MPa, the flexural strength is 3.8—4.3 MPa, and the permeability coefficient is 2.85—2.92 mm/s. The results of the principal component analysis show that the principal factors on the performance of pervious concrete are in order as follows: 44.8% for interfacial properties, mix design of paste and void characteristics, 27.5% for coating properties of paste, and 20.0% for the strength of paste.
作者简介: 李辉,同济大学交通运输工程学院教授、博士研究生导师。2005年、2008年分别于东南大学土木工程专业本科、道路与铁道工程专业硕士毕业,2011年、2012年分别于美国加州大学戴维斯校区环境与资源经济学专业硕士、土木与环境工程专业博士毕业,2015年于美国加州大学戴维斯校区研究科学家工作结束后到同济大学工作至今。目前主要从事交通基础设施及城市环境的可持续性及弹韧性等方面的研究工作。发表论文100余篇,包括Journal of Cleaner Production、Journal of Environmental Management、Construction and Building Materials、Transportation Research Part D: Transport and Environment等;出版英文专著1部、中文专著2部;授权发明专利6项。
引用本文:
李辉, 杨洁, 付凯敏, 张毅, 张犁, 朱耀庭, 俞博. 基于胶浆特性的透水混凝土强度及抗冻性研究[J]. 材料导报, 2022, 36(16): 21110275-8.
LI Hui, YANG Jie, FU Kaimin, ZHANG Yi, ZHANG Li, ZHU Yaoting, YU Bo. Investigation on the Strength and Freeze-Thaw Resistance of Pervious Concrete Based on the Properties of Cement Paste. Materials Reports, 2022, 36(16): 21110275-8.
1 Offenberg M A, Wade D J, Weiss C A, et al. Report on pervious concrete (reapproved 2011), American Concrete Institute, United States, 2010. 2 Xie N, Akin M, Shi X M. Journal of Cleaner Production, 2019, 210, 1605. 3 Singh A, Sampath P V, Biligiri K P. Construction and Building Mate-rials, 2020, 261, 120491. 4 Kevern J T, Wang K, Schaefer V R. Journal of Materials in Civil Engineering, 2010, 22(5), 469. 5 Yu F, Sun D Q, Wang J, et al. Construction and Building Materials, 2019, 209, 463. 6 Jiang K, Qi C Z, Cui Y J, et al. Materials Reports, 2020, 34(Z1), 189(in Chinese). 姜宽, 戚承志, 崔英洁, 等. 材料导报, 2020, 34(Z1), 189. 7 Yang X J, Liu J S, Li H X, et al. Construction and Building Materials, 2020, 235, 117532. 8 Zhong R, Wille K. Construction and Building Materials, 2015, 98, 51. 9 Liu R Y, Chi Y, Chen S Y, et al. International Journal of Concrete Structures and Materials, 2020, 14(1), 29. 10 Yu F. Research on performance enhancement technology of pervious concrete. Ph.D. Thesis, Tongji University, China, 2020(in Chinese). 余帆. 透水混凝土路面材料性能增强技术研究. 博士学位论文, 同济大学, 2020. 11 Deo O, Neithalath N. Construction and Building Materials, 2011, 25(11), 4181. 12 Deo O, Neithalath N. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2010, 528(1), 402. 13 Rehder B, Banh K, Neithalath N. Engineering Fracture Mechanics, 2014, 118, 1. 14 Taheri B M, Ramezanianpour A M, Sabokpa S, et al. Journal of Buil-ding Engineering, 2021, 33, 101617. 15 Zhong R, Wille K. Cement & Concrete Composites, 2016, 70, 130. 16 Zhong R, Wille K. Construction and Building Materials,2018,162,132. 17 Chen T F, Gao X J. ACS Sustainable Chemistry & Engineering, 2020, 8(9), 3872. 18 Vancura M, Macdonald K, Khazanovich L. Cement & Concrete Compo-sites, 2011, 33(10), 1080. 19 Jiang Z W, Sun Z P, Wang P M. Journal of Building Materials, 2005(5), 513(in Chinese). 蒋正武, 孙振平, 王培铭. 建筑材料学报, 2005(5), 513. 20 Zhang Y, Li H, Abdelhady A, et al. Construction and Building Mate-rials, 2020, 263, 120614. 21 Li J Y, Cao J G, Xu W Y, et al. Journal of Hydraulic Engineering,1999(1),42(in Chinese). 李金玉, 曹建国, 徐文雨, 等. 水利学报, 1999(1), 42. 22 Wang H L, Li Q B. Engineering Mechanics,2006(10),141(in Chinese). 王海龙, 李庆斌. 工程力学, 2006(10), 141. 23 Zhang S P, Deng M, Tang M S. Journal of Materials Science & Enginee-ring, 2008, 26(6), 990(in Chinese). 张士萍, 邓敏, 唐明述. 材料科学与工程学报, 2008, 26(6), 990.