Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21110009-10    https://doi.org/10.11896/cldb.21110009
  无机非金属及其复合材料 |
基于光固化技术增材制造陶瓷和金属的研究进展
申发磊1,2, 殷凤仕2, 李星晨1,2, 杜文祥1,2, 郭娜娜1,2,*, 方晓英1,2,*
1 山东理工大学增材制造研究院,山东 淄博 255000
2 山东理工大学机械工程学院,山东 淄博 255000
Research Progress of Additive Manufacturing Ceramics and Metals Based on Light Curing Technique
SHEN Falei1,2, YIN Fengshi2, LI Xingchen1,2, DU Wenxiang1,2, GUO Nana1,2,*, FANG Xiaoying1,2,*
1 Institute of Additive Manufacturing, Shandong University of Technology, Zibo 255000, Shandong, China
2 School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
下载:  全 文 ( PDF ) ( 14944KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 增材制造是目前极具发展潜力的前沿技术之一。光固化增材技术作为增材制造的一个分支,具有高效、低能耗和成型精度高等优点,可解决传统工艺制备复杂结构金属和陶瓷存在的周期长、加工困难和成本高等问题,具有良好的经济和技术优势。光固化成型致密/多孔氧化物陶瓷已被广泛开发,并成功应用于微电子组件、光子晶体和骨科植入物等领域,但光固化非氧化物陶瓷和金属材料的应用基础理论和成型技术还未十分成熟,适宜于光固化工艺的陶瓷和金属浆料的制备仍面临很多挑战。本文综述了光固化增材制造氧化物陶瓷、非氧化物陶瓷和金属材料的研究进展,从浆料制备、光固化成型和后处理三个阶段分析了光固化增材制备三种材料的主要技术难点和可能的解决方案,最后指出了光固化陶瓷和金属材料的未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
申发磊
殷凤仕
李星晨
杜文祥
郭娜娜
方晓英
关键词:  增材制造  光固化  陶瓷  金属    
Abstract: Additive manufacturing is one of the most potential edge-cutting technologies in the current decades. As a branch of the additive manufactu-ring, the light curing technology possesses the advantages of high efficiency, low energy consumption and good manufacturing precision. It is considered to have a greater economic and technical significance that surpasses traditional manufacturing techniques, by overcoming the latter’s drawbacks-long production cycle, machining difficulties and high cost when producing metals and ceramics. The light curing technique for oxide ceramic materials has been extensively developed and improved for fabricating dense or porous ceramic parts in a variety of fields, such as mic-roelectronics components, photonic crystals, and orthopedic implants. However, the light curing of non-oxide ceramic and metals is not mature enough yet for industrial production, especially as the slurry preparation for ceramic and metallic materials is still challenging. The paper intends to review the research progress in the fabrication of oxide ceramics, non-oxide ceramics and metallic materials by light curing. The main technical challenges and possible solutions are proposed in terms of three primary stages, i.e., slurry preparation, light curing forming and post proce-ssing, with respect to the production of the above-mentioned three typical categories of materials. A brief outlook of the future development trends is also given.
Key words:  additive manufacturing    light curing    ceramic    metal
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TQ174  
  TG14  
基金资助: 国家重点研发计划(2018YFB1105900);山东省自然科学基金(ZR2020ME020)
通讯作者:  * 郭娜娜,山东理工大学机械工程学院讲师、硕士研究生导师。2009年毕业于山东科技大学,获得金属材料工程专业学士学位,2012年毕业于山东科技大学,获得材料加工工程硕士学位,2016年毕业于哈尔滨工业大学,获材料加工博士学位。主要从事先进金属材料的设计、激光熔敷与增材制造技术制备高性能金属材料及生物医用材料等方面的研究工作。近年来主持或参与了多项国家自然科学基金项目、山东省自然科学基金项目、中国博士后基金项目,在国内外期刊发表学术论文30余篇,其中SCI索引论文12篇,授权国家发明专利2项。2022年入选山东省博士后创新人才支持计划。guonana111@126.com
方晓英,山东理工大学机械工程学院教授、博士研究生导师。1993年毕业于辽宁科技大学,获得金属压力加工专业学士学位;2000年毕业于东北大学,获得材料加工工程硕士学位;2009年毕业于上海大学,获得材料学博士学位。主要从事高温合金、生物合金及高端定制化骨科植入物增材制造、单相和复相材料内界面工程等方面的研究工作。近年来,在上述研究领域承担国家重点研发计划子课题、国家自然科学基金项目、中俄国际合作交流项目和省重点研发计划等项目。在国际权威期刊发表SCI/EI论文50余篇。fxy@sdut.edu.cn   
作者简介:  申发磊,2020年6月毕业于山东理工大学,获得工学学士学位。现为山东理工大学机械工程学院博士研究生,在方晓英教授的指导下进行研究。目前主要研究领域为增材制造NiTi形状记忆合金。
引用本文:    
申发磊, 殷凤仕, 李星晨, 杜文祥, 郭娜娜, 方晓英. 基于光固化技术增材制造陶瓷和金属的研究进展[J]. 材料导报, 2023, 37(12): 21110009-10.
SHEN Falei, YIN Fengshi, LI Xingchen, DU Wenxiang, GUO Nana, FANG Xiaoying. Research Progress of Additive Manufacturing Ceramics and Metals Based on Light Curing Technique. Materials Reports, 2023, 37(12): 21110009-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110009  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21110009
1 Tofail S A M, Koumoulos E P, Bandyopadhyay A, et al. Materials Today, 2018, 21(1), 1562.
2 Tuan D N, Alireza K, Gabriele I, et al. Composites Part B:Engineering, 2018, 143, 172.
3 Bose S, Ke D X, Sahasrabudhe H, et al. Progress in Materials Science, 2018, 93, 45.
4 Satish P K, Nancharaih T, Subba R V V. Materials Today:Proceedings, 2018, 5(2), 3873.
5 Diener S, Zocca A, Günster J. Open Ceramics, 2021, 8, 100191.
6 Quan H Y, Zhang T, Xu H, et al. Bioactive Materials, 2020, 5(1), 110.
7 Zhao G, Hu K H, Feng Q, et al. Ceramics International, 2021, 47(12), 17719.
8 Wang X G, Zhou Y L, Zhou L, et al. Journal of the European Ceramic Society, 2021, 41(8), 4650.
9 Leigh S J, Purssell C P, Bowen J, et al. Sensors & Actuators:A. Phy-sical, 2011, 168(1), 66.
10 Soshu Kirihara, Toshiki Niki. International Journal of Applied Ceramic Technology, 2015, 12(1), 32.
11 Francesco Baino, Giulia Magnaterra, Elisa Fiume, et al. Journal of the American Ceramic Society, 2022, 105(3), 1648.
12 Li R, Chen H, Wang Y, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104255.
13 Chen Z, Li D, Zhou W, et al. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2010, 224(4), 641.
14 Lakhdar Y, Tuck C, Binner J, et al. Progress in Materials Science, 2021, 116, 100736.
15 Akash Bhatia, Anuj Kumar Sehgal. Materials Today:Proceedings, 2023, 81, 1060.
16 Attar H, Calin M, Zhang L C, et al. Materials Science & Engineering A, 2014, 593, 170.
17 Jayasheelan V, Samuel K, Ruth D G, et al. Materials Science & Engineering C, 2015, 46, 52.
18 Zhang J J, Wei L Y, Meng X X, et al. Ceramics International, 2020, 46(7), 8745.
19 Gao Y Q, Ding J J. Procedia Manufacturing, 2020, 48, 749.
20 Chen Z W, Li Z Y, Li J J, et al. Journal of the European Ceramic Society, 2019, 39(4), 661.
21 Reham B Osman, Albert J van der Veen, Dennis Huiberts, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 521.
22 Leite de Camargo Italo, Morais Mateus Mota, Fortulan Carlos Alberto, et al. Ceramics International, 2021, 47(9), 11906.
23 Setareh Zakeri, Minnamari Vippola, Erkki Levänen. Additive Manufacturing, 2020, 35, 101177.
24 Rasaki S A, Xiong D Y, Xiong S F, et al. Journal of Advanced Cera-mics, 2021, 10, 442.
25 Chang Woo Gal, Joo Won Oh, Gi Woung Song, et al. Ceramics International, 2019, 45(14), 16982.
26 Badev A, Abouliatim Y, Chartier T, et al. Journal of Photochemistry & Photobiology A:Chemistry, 2011, 222(1), 117.
27 Pfeiffer Stefan, Florio Kevin, Puccio Dario, et al. Journal of the Euro-pean Ceramic Society, 2021, 41(13), 6087.
28 Nie J B, Li M S, Liu W W, et al. Journal of the European Ceramic Society, 2020, 41(1), 646.
29 Xing H Y, Zou B, Liu X Y, et al. Powder Technology, 2020, 359, 314.
30 Adrián Blas Romero, Markus Pfaffinger, Gerald Mitteramskogler, et al. The International Journal of Advanced Manufacturing Technology, 2017, 88, 1547.
31 Ding M M, Shi Y, Xie J J, et al. International Journal of Applied Ceramic Technology, 2020, 17(1), 285.
32 Xing Z W, Liu W W, Chen Y, et al. Ceramics International, 2018, 44(16), 19939.
33 Anton Sotov, Artem Kantyukov, Anatoly Popovich, et al. Ceramics International, 2021, 47(21), 30358.
34 Wang Z, Huang C Z, Wang J, et al. Ceramics International, 2019, 45(3), 3902.
35 Jennifer A L. Journal of the American Ceramic Society, 2000, 83(10), 2341.
36 Diptanshu, Miao G X, Ma C. Manufacturing Letters, 2019, 21, 20.
37 Mei F S, Yuan T C, Li R D, et al. International Journal of Applied Ceramic Technology, 2018, 15(1), 89.
38 Wozniak M, de Hazan Y, Graule T, et al. Journal of the European Ceramic Society, 2011, 31(13), 2221.
39 Wu H D, Cheng Y L, Liu W, et al. Ceramics International, 2016, 42(15), 17290.
40 Song Se Yeon, Park Min Soo, Lee Doojin, et al. Materials & Design, 2019, 180(15), 107960.
41 Gerald Mitteramskogler, Robert Gmeiner, Ruth Felzmann, et al. Additive Manufacturing, 2014, 1-4, 110.
42 Conti L, Bienenstein D, Borlaf M, et al. Materials, 2020, 13(6), 1317.
43 Kovacev N, Li S, Essa K, et al. Journal of the European Ceramic Society, 2021, 41(15), 7734.
44 Tumbleston J R, Shirvanyants D, Ermoshkin N, et al. Science, 2015, 347(6228), 1349.
45 Janusziewicz R, Tumbleston J R, Quintanilla A L, et al. Proceedings of the National Academy of Sciences, 2016, 113(42), 11703.
46 Zhang G M, Jiang J, Wang H, et al. Journal of Manufacturing Processes, 2021, 64, 341.
47 Wang K, Qiu M B, Jiao C, et al. Ceramics International, 2020, 46(2), 2438.
48 Li H, Liu Y S, Liu Y S, et al. Ceramics International, 2021, 47(4), 4884.
49 Santoliquido O, Camerota F, Ortona A. Open Ceramics, 2021, 5, 100059.
50 Liu W, Wu H, Tian Z, et al. Journal of the American Ceramic Society, 2019, 102(5), 2257.
51 Jheison Lopes dos Santos, Rubens Lincoln Santana Blazutti Maral, Paulo Roberto Rodrigues de Jesus, et al. Journal of Materials Research and Technology, 2018, 7(4), 592.
52 Débora C N F, Mariana B P, Juliana A, et al. Materials Science & Engineering A, 2020, 781, 139237.
53 Zhang K Q, He R J, Ding G J, et al. Ceramics International, 2020, 47(2), 2303.
54 Li Y H, Wang M L, Wu H D, Journal of the European Ceramic Society, 2019, 39(15), 4921.
55 He C, Ma C, Li X L, et al. Additive Manufacturing, 2021, 46, 102111.
56 Wang X F, Schmidt F, Hanaor D, et al. Additive Manufacturing, 2019, 27, 80.
57 Hazan Y D, Penner D. Journal of the European Ceramic Society, 2017, 37(16), 5205.
58 Tang J, Yang Y, Huang Z R. Materials Reports, 2021, 35(Z1), 172(in Chinese).
唐杰, 杨勇, 黄政仁. 材料导报, 2021, 35(Z1), 172.
59 Eckel Z C, Zhou C Y, Martin J H, et al. Science, 2016, 351(6268), 58.
60 Chen J S, Wang Y J, Pei X L, et al. Ceramics International, 2020, 46(9), 13066.
61 Ding G J, He R J, Zhang K Q, et al. Ceramics International, 2020, 46(4), 4720.
62 Hu C Q, Chen Y F, Liu H L, et al. Ceramics International, 2021, 47(9), 12442.
63 Tang J, Guo X T, Chang H T, et al. Journal of the European Ceramic Society, 2021, 41(15), 7516.
64 Huang R J, Jiang Q J, Wu H D, et al. Ceramics International, 2019, 45(4), 5158.
65 Jin E Z, Ma D H, Yuan Z H, et al. Scanning, 2020, 2020, 8840963.
66 Liu Y, Zhan L N, Wen L, et al. Journal of the European Ceramic Society, 2020, 41(4), 2386.
67 Lin L F, Wu H D, Xu Y R, et al. Materials Chemistry and Physics, 2020, 249, 122969.
68 Candelario V M, Moreno R, Shen Z J, et al. Journal of the European Ceramic Society, 2016, 37(5), 1929.
69 Xu T T, Cheng S, Jin L Z, et al. International Journal of Applied Ceramic Technology, 2020, 17(2), 438.
70 Zhang H, Yang Y, Liu B, et al. Ceramics International, 2019, 45(8), 10800.
71 Bai X J, Ding G J, Zhang K Q, et al. Open Ceramics, 2021, 5, 100046.
72 Zhang H, Yang Y, Hu K H, et al. Additive Manufacturing, 2020, 34, 101199.
73 Rieger T, Schubert T, Schurr J, et al. Powder Technology, 2021, 383, 498.
74 Zhang Y B, Li S, Zhao Y T, et al. Additive Manufacturing, 2021, 39, 101897.
75 Wang H J, Chen C G, Yang F, et al. Materials Today Communications, 2021, 26, 102037.
76 Shahzad Aamir, Lazoglu Ismail. Composites Part B:Engineering, 2021, 225(15), 109249.
77 Tu R W, Sodano H A. Additive Manufacturing, 2021, 46, 102180.
78 Nguyen H X, Suen H, Poudel B, et al. CIRP Annals-Manufacturing Technology, 2020, 69(1), 177.
79 Shang F, Wang Z Y, Chen X Q, et al. Vacuum, 2021, 184, 109910.
80 Dehghan-Manshadi A, Bermingham M J, Dargusch M S, et al. Powder Technology, 2017, 319, 289.
81 Gu J H, Qiao L, Cai W, et al. Journal of Magnetism and Magnetic Materials, 2021, 530, 167931.
82 Shi Yeon Kim, Dong-Hun Yeo, Hyo-Soon Shin, et al. Ceramics International, 2019, 45(14), 17930.
83 German R M. Materials, 2013, 6(8), 3641.
84 Satyajit B, Claus J J. Key Engineering Materials, 2016, 704, 113.
85 Jaroslav Málek, František Hnilica, Jaroslav Veselý, et al. Materials Characterization, 2014, 96, 166.
86 Roger Pelletier, Louis Philippe Lefebvre, Eric Baril. Key Engineering Materials, 2016, 704, 139.
87 Dehghan-Manshadi A, Yu P, Dargusch M, et al. Powder Technology, 2020, 364(15), 189.
88 Zhang Y Y, Bian T Y, Shen X T, et al. Journal of Alloys and Compounds, 2021, 868, 158711.
[1] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[2] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[3] 彭启清, 刘明, 黄艳斐, 马国政, 郭伟玲, 王海斗. 热喷涂陶瓷-树脂复合涂层的研究现状[J]. 材料导报, 2023, 37(9): 21100184-12.
[4] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[5] 刘震, 尹育航, 敬臣, 武美玲, 陶洪亮, 程彦强. 磨粒有序分布对金刚石锯片切割性能的影响[J]. 材料导报, 2023, 37(8): 21070268-5.
[6] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[7] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[8] 张喜庆, 滕莹雪, 郭菁. 元胞自动机在金属材料腐蚀研究中的应用[J]. 材料导报, 2023, 37(8): 21050078-11.
[9] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[10] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[11] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[12] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[13] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[14] 赵云松, 张迈, 戴建伟, 郭会明, 孙志军, 郭媛媛, 张剑, 花银群, 霍坤, 戴峰泽. 航空发动机涡轮叶片热障涂层研究进展[J]. 材料导报, 2023, 37(6): 21040168-7.
[15] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed