Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21080180-8    https://doi.org/10.11896/cldb.21080180
  无机非金属及其复合材料 |
新型氢同位素分离材料研究进展
邓潇君1,*, 熊仁金1, 闫霞艳1, 罗文华2,*
1 中国工程物理研究院材料研究所,四川 绵阳 621907
2 表面物理与化学重点实验室,四川 绵阳 621908
Development of New Materials for Hydrogen Isotopes Separation
DENG Xiaojun1,*, XIONG Renjin1, YAN Xiayan1, LUO Wenhua2,*
1 Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, Sichuan, China
2 Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, Sichuan, China
下载:  全 文 ( PDF ) ( 8864KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高效、大规模的氢同位素分离技术是实现氘氚聚变能源利用的关键前提之一,而方法、技术的发展主要取决于关键材料(即分离材料)的发展。本文简要综述了氢同位素分离材料的发展现状,介绍了传统的用于氢同位素分离的钯或含钯材料的应用情况、存在的主要问题以及后续可能的改进方向;重点介绍了二维膜、有机金属骨架和具有孔开关效应的分子筛这三类近年发展起来的新型分离材料,给出了它们用于氢同位素分离的原理、分离效果、存在的问题以及后续的研究、发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓潇君
熊仁金
闫霞艳
罗文华
关键词:  氢同位素  分离  二维膜  MOF  孔开关效应    
Abstract: Tritium/hydrogen isotopes separation with high efficiency and huge scale is one of the crucial technologies for the realization of deuterium-tritium fusion energy application, and the development of separation methods is highly dependent on the separation materials. This paper provides a state-of-the-art review of hydrogen isotopes separation materials. It contains a brief introduction of advantages, disadvantages and applications of the traditional palladium and Pd-containing materials, and then a detailed summary on three kinds of newly developed materials, i.e., two-dimensional membranes, metal-organic framework (MOF) and zeolites with trapdoor effects, focusing on their separation mechanisms, separation demonstrations, and also some existent problems. Finally, based on that summary, the paper gives suggestions about the directions for future researches and improvements of each type of separation material and potential separation material.
Key words:  hydrogen isotopes    separation    two-dimensional membranes    MOF    trapdoor effect
发布日期:  2023-07-10
ZTFLH:  O643.14  
  TL992  
基金资助: 国家重点研发计划(2017YFE0301500);表面物理与化学重点实验室开放基金(XKFZ202004);中国工程物理研究院创新发展基金(CX20200019;CX2019018)
通讯作者:  *邓潇君,2007年毕业于中南大学,获得化学工程与工艺学士学位,并分别于2010年和2021年获得中国工程物理研究院核燃料循环与材料专业的工学硕士和博士学位。目前主要研究领域为氢同位素分离材料与技术、储氢材料等,并在International Journal of Hydrogen Energy、Microporous and Mesoporous Materials等SCI期刊上发表数篇研究论文,获得多项国家发明专利。dengxiaojun@caep.cn;
罗文华,中国工程物理研究院材料研究所所长,表面物理与化学重点实验室主任,研究员,博士研究生导师,中国核学会理事,中国化学会理事,中国核学会锕系物理与化学分会理事长,享受国务院特殊津贴。长期从事核材料性能和相容性、氚化学与氚工艺等相关领域的研究,并取得了大量系统性、创新性的研究成果,以第一或通信作者身份在Journal of Nuclear Materials、Journal of Power Sources、 International Journal of Hydrogen Energy、 Acta Physico-Chimica Sinica等SCI学术期刊发表研究论文数十篇,获部委级和军队科技进步奖10余项,国家专利10余项。luowenhua@caep.cn   
引用本文:    
邓潇君, 熊仁金, 闫霞艳, 罗文华. 新型氢同位素分离材料研究进展[J]. 材料导报, 2023, 37(13): 21080180-8.
DENG Xiaojun, XIONG Renjin, YAN Xiayan, LUO Wenhua. Development of New Materials for Hydrogen Isotopes Separation. Materials Reports, 2023, 37(13): 21080180-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080180  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21080180
1 Franz Trieb, Massimo Moser, Jürgen Kern. Energy, 2018, 153, 1.
2 Aldeman M R, Jo J H, Loomis D G. Energy, 2015, 90, 1082.
3 Liu Taixiu, Liu Qibin, Lei Jing, et al. Applied Energy, 2018, 225, 380.
4 Janusz Kotowicz, Daniel Węcel, Michał Jurczyk. Applied Energy, 2018, 216, 45.
5 Nadia Maïzi, Edi Assoumou. Applied Energy, 2014, 136, 849.
6 Xie Heng, Lang Minggang, Yu Zhangcheng. Fusion Engineering and Design, 2018, 127, 207.
7 Zheng S, King D B, Garzotti L, et al. Fusion Engineering and Design, 2016, 103, 13.
8 Glugla M, Antipenkov A, Beloglazov S, et al. Fusion Engineering and Design, 2007, 82, 472.
9 Pinghui Zhao, Wanli Yang, Yuanjie Li, et al. Fusion Engineering and Design, 2017, 114, 26.
10 Hartmut Zohm. Fusion Engineering and Design, 2013, 88, 428.
11 Hyunchul Oh, Michael Hirscher. European Journal of Inorganic Chemistry, 2016, 4278.
12 Jiang G Q , Luo D L , Lu G D, et al. Tritium and industry technology of tritium, Chap. II. National Defense Industry Press, Beijing, China, 2007 (in Chinese).
蒋国强, 罗德礼, 陆光达, 等. 氚和氚的工程技术, 国防工业出版社, 2007.
13 Willms S, Tritium supply considerations, Presented at FESAC Fusion Development Paths Workshop, Jan. 14, 2003.
14 Sawan M E, Abdou M A. Fusion Engineering and Design, 2006, 81, 1131.
15 Neffe G, Besserer U, Dehne J, et al. Fusion Engineering and Design, 1998, 39-40, 987.
16 Sarigiannis D A. Fusion Engineering and Design, 1995, 28, 406.
17 Lee M W. Hydrogen Isotope Separation Experience at the Savannah River Site (U) WSRC-MS-93-255.
18 Xie B, Xia X L , Liu Y N. Cryogenics, 2007(6), 43 (in Chinese).
谢波, 夏修龙, 刘云怒. 低温工程, 2007(6), 43.
19 William L. Luyben. Industrial & Engineering Chemistry Research, 2004, 43(25), 8133.
20 Deng X J, Luo D L, Qian X J. Journal of Isotopes, 2010, 23(1), 53 (in Chinese).
邓潇君, 罗德礼, 钱晓静. 同位素, 2010, 23(1), 53.
21 Wang D, Flanagan T B, Shanahan K. Journal of Membrane Science, 2016, 499, 452.
22 Al-Mufachi N A, Rees N V, Steinberger-Wilkens R. Renewable & Sustainable Energy Reviews, 2015, 47, 540.
23 Barreiro M M, Maroño M, Sánchez J M. Applied Thermal Engineering, 2013, 74, 186.
24 Shin-Kun Ryi, Hyo-Sun Ahn, Jong-Soo Park, et al. International Journal of Hydrogen Energy, 2014, 39, 4698.
25 Cheh C H. Journal of Chromatography A, 1994, 658, 283.
26 Yoshinori Kawamura, Yoshihiro Onishi, Kenji Okuno, et al. Fusion Engineering and Design, 2008, 83, 655.
27 Wu Wenqing, Wei Yongjun, Ba Jingwen, et al. Fusion Science and Technology, 2012, 61, 81.
28 Hiroshi Fujiwara, Satoshi Fukada, Yasuko Yamaguchi. International Journal of Hydrogen Energy, 2000, 25 (2), 127.
29 Jaehyun Noh, Alyssa Marie Fulgueras, Leah Jessica Sebastian, et al. Journal of Industrial and Engineering Chemistry, 2017, 46, 1.
30 William H Fleming, Jamil A Khan, Curtis A Rhodes. International Journal of Hydrogen Energy, 2001, 26, 711.
31 Heung L K, Sessions H T, Xiao X, et al. Fusion Science and Technology, 2009, 56, 1471.
32 Ducret D, Ballanger A, Steimetz J, et al. Fusion Engineering and Design,2001, 58-59, 417.
33 Lasser R, Bell A, Bainbridge N, et al. Fusion Engineering and Design, 1999, 47, 301.
34 Lasser R, Jones G, Hemmerich J L, et al. Fusion Technology, 1995, 28, 681.
35 Deng X J. Study on hydrogen isotopes separation using frontal displacement chromatography. Master's Thesis, China Academy of Engineering Physics, China, 2010 (in Chinese).
邓潇君. 前沿置换色谱法分离氢同位素技术研究. 硕士学位论文, 中国工程物理研究院, 2010.
36 Satoshi Fukada, Katsuhiro Fuchinoue, Masabumi Nishikawa. Journal of Nuclear Materials, 1995, 226, 311.
37 Tang T, Lu G D. Chinese Journal of Rare Metals, 2003, 27(2), 278 (in Chinese).
唐涛, 陆光达. 稀有金属, 2003, 27(2), 278.
38 Tang T, Chen H C. Chinese Journal of Rare Metals, 2004, 28(4), 652. (in Chinese).
唐涛, 陈虎翅. 稀有金属, 2004, 28(4), 652.
39 Tang T. Thermodynamics of palladium absorbing and desorbing hydrogen isotopes. Master's Thesis, China Academy of Engineering Physics, China, 2003 (in Chinese).
唐涛. 钯吸放氢同位素的热力学性质研究. 硕士学位论文, 中国工程物理研究院, 2003.
40 Charton S, Corriou J P, Schweich D. Chemical Engineering Science, 1999, 54, 103.
41 Lei Q H. Preparation of palladium supported on kieselgur for hydrogen isotopes separation and its properties on hydrogen-absorbing and desorbing. Master's Thesis, China Academy of Engineering Physics, China, 2004 (in Chinese).
雷强华. 氢同位素分离涂钯硅藻土制备及吸-放氢特性研究. 硕士学位论文, 中国工程物理研究院, 2004.
42 Qian X J, Xiong Y F, Huang G Q, et al. Atomic Energy Science and Technology, 2006, 40(2), 212 (in Chinese).
钱晓静, 熊义富, 黄国强, 等. 原子能科学与技术, 2006, 40(2), 212.
43 Mosley W C. Pd/K for RTF and 232-H TCAP unit (U), WSRC-TR-90-554.
44 Heung L K, Sessions H T, Xiao X, et al. Fusion Science and Technology, 2009, 56, 1471.
45 Xiao X, Heung L K, Sessions H T. Fusion Science and Technology, 2015, 67, 643.
46 Heung L K, Sessions H T, Xiao X. Fusion Science and Technology, 2011, 60, 1331.
47 Samsun B M, Fukada S, Fujiwara H. International Journal of Hydrogen Energy, 2001, 26, 225.
48 Fukada S, Samsun-Baharina M, Fujiwara H. International Journal of Hydrogen Energy, 2002, 27, 177.
49 Francoise Strzelczyk, Didier Leterq, Wilhelm A M, et al. Journal of Chromatography A, 1998, 822, 326.
50 Lässer R, Bell A C, Bainbridge N, et al. Fusion Engineering and Design, 1999, 47, 301.
51 Lässer R, Jones G, Hemmerich J L, et al. Fusion Technology, 1995, 28, 681.
52 Kuniaki Watanabe, Masao Matsuyama, Tohru Kobayashi, et al. Fusion Engineering and Design, 1998, 39-40, 1001.
53 Kuniaki Watanabe, Masao Matsuyama, Tohru Kobayashi, et al. Journal of Alloy and Compounds, 1997, 257, 278.
54 Jin Y, Hara M, Wan J L, et al. Journal of Alloys and Compounds, 2002, 340, 207.
55 Yasumatsu T, Wan J L, Matsuyama M, et al. Journal of Alloys and Compounds, 1999, 293-295, 900.
56 Morimoto Y, Kojima S, Sasaki T, et al. Fusion Engineering and Design, 2006, 81, 821.
57 Shin-Kun Ryi, Hyo-Sun Ahn, Jong-Soo Park, et al. International Journal of Hydrogen Energy, 2014, 39, 4698.
58 Tanaka D A P, Tanco M A L, Okazaki J, et al. Journal of Membrane Science, 2008, 320, 436.
59 Demange D, Welte S, Glugla M. Fusion Engineering and Design, 2007, 82, 2383.
60 Tereschenko G F, Ermilova M M, Mordovin V P, et al. International Journal of Hydrogen Energy, 2007, 32, 4016.
61 Yin Z H, Yang Z B, Li S. Chinese Journal of Rare Metals, 2021, 45(2), 226 (in Chinese).
殷朝辉, 杨占兵, 李帅. 稀有金属, 2021, 45(2), 226.
62 Saheed Bukola, Ying Liang, Carol Korzeniewski, et al. Journal of American Chemistry Society, 2018, 140, 1743.
63 An S, Joshi B N, Lee J G, et al. Catalysis Today, 2017, 295, 14.
64 Kidambi P R, Jang D, Idrobo J C, et al. Advanced Materials, 2017, 29, 29.
65 Boutilier M S H, Jang D J, Idrobo J C, et al. ACS Nano, 2017, 11, 5726.
66 Wang L D, Boutilier M S H, Kidambi P R, et al. Advanced Materials, 2017, 29, 1605896.
67 Qin Y Z, Hu Y Y, Koehler S, et al. ACS Applied Materials & Interfaces, 2017, 9, 9239.
68 Wei G L, Quan X, Chen S, et al. ACS Nano, 2017, 11, 1920.
69 Hong S, Constans C, Martins M V S, et al. Nano Letters, 2017, 17, 728.
70 Hu S, Lozada-Hidalgo M, Wang F C, et al. Nature, 2014, 516, 227.
71 Lozada-Hidalgo M, Hu S, Marshall O, et al. Science, 2016, 351, 68.
72 Lozada-Hidalgo M, Zhang S, Hu S, et al. Nature Communications, DOI: 10. 1038/ncomms15215.
73 Liu K. Synthesis, structure and properties of metal-organic frameworks based on N-containing ligands. Ph. D. Thesis , Jilin University, China, 2015 (in Chinese).
刘康, 含氮配体构筑金属有机骨架化合物的合成、结构与性质研究. 博士学位论文, 吉林大学, 2015.
74 Wang X X. Synthesis, characterization and properties research of nonel micropore metal-organic frameworks. Ph. D. Thesis, Shandong University, China, 2015 (in Chinese).
王晓晴, 新型微孔金属-有机框架物的设计合成、表征及其性能研究. 博士学位论文. 山东大学, 2015.
75 Wu L. Investigativn of design, synthesis, properties of noel metal-organic structures and frameworks. Ph./D. Thesis, Jilin University, China, 2012 (in Chinese).
吴蕾, 新型金属有机骨架材料的设计合成、结构与性能研究. 博士学位论文, 吉林大学, 2012.
76 Fu J R, Ben T. Acta Chimica Sinica, 2020, 78, 805 (in Chinese).
付静茹, 贲腾. 化学学报, 2020, 78(8), 805.
77 Jin Yeong Kim, Hyunchul Oh, Hoi Ri Moon. Advanced Materials, 2019, 31, 1805293.
78 Chen B, Zhao X, Putkham A, et al. Journal of American Chemistry Society, 2008, 130, 6411.
79 Noguchi D, Tanaka H, Kondo A, et al. Journal of American Chemistry Society, 2008, 130, 6367.
80 Oh H, Park K S, Kalidindi S B, et al. Journal of Materials Chemistry A, 2013, 1, 3244.
81 Teufel J, Oh H, Hirscher M, et al. Advanced Materials, 2013, 25, 635.
82 Oh H, Kalidindi S B, Um Y, et al. Angewandte. Chemie-International Edition, 2013, 52, 13219.
83 Kim J Y, Zhang L, Balderas-Xicohténcatl R, et al. Journal of American Chemistry Society, 2017, 139, 17743.
84 FitzGerald S A, Burkholder B, Friedman M, et al. Journal of American Chemistry Society, 2011, 133, 20310.
85 Oh H, Savchenko I, Mavrandonakis A, et al. ACS Nano, 2014, 8, 761.
86 Savchenko I, Mavrandonakis A, Heine T, et al. Microporous and Mesoporous Materials, 2015, 216, 133.
87 Weinrauch I, Savchenko I, Denysenko D, et al. Nature Communications, 2017, 8, 14496.
88 Sharma A, Lawler K V, Wolffis J J, et al. Langmuir, 2017, 33, 14586.
89 Kim J Y, Balderas-Xicohténcatl R, Zhang L, et al. Journal of American Chemistry Society, 2017, 139, 15135.
90 Beenakker J J M, Borman V D, Krylov S Y. Chemical Physics Letters, 1995, 232, 379.
91 Chu X Z. Studies on the adsorption of hydrogen isotopes. Ph. D. Thesis, Tianjin University, China, 2007 (in Chinese).
褚效中. 氢同位素吸附研究. 博士学位论文, 天津大学, 2007.
92 Li J, Shi J S, Wu Er D, et al. Atomic Energy Science and Technology, 2013, 47, 717 (in Chinese).
李静, 石劲松, 吴二冬, 等. 原子能科学技术, 2013, 47(5), 717.
93 Qian Xiaojing, Luo Deli, Huang Guoqiang, et al. Fusion Engineering and Design, 2012, 87, 359.
94 Kotoh K, Nishikawa T, Kashio Y. Journal of Nuclear Science and Technology, 2002, 39, 435.
95 Kotoh K, Kudo K. Fusion Science and Technology, 2005, 48, 148.
96 Niimura S, Fujimori T, Minami D, et al. Journal of American Chemistry Society, 2012, 134, 18483.
97 Jin Shang, Gang Li, Ranjeet Singh, et al. Journal of American Chemistry Society, 2012, 134, 19246.
98 Shang J, Li G, Gu Q, et al. Chemical Communications, 2014, 50, 4544.
99 Shang J, Li G, Singh R, et al. Journal of Chemical Physics, 2014, 140, 084705.
100 Li G, Shang J, Gu Q, et al. Nature Communications, DOI:10. 1038/ncomms15777.
101 Shang J, Li G, Singh R, et al. Journal of Physical Chemistry C, 2013, 117, 12841.
102 Shang J, Li G, Webley P A, et al. Computational Materials Science, 2016, 122, 307.
103 Trees De Baerdemaeker, Dirk De Vos. Nature Chemistry, 2013, 5, 89.
104 Physick A J W, Wales D J, Owens S H R, et al. Chemical Engineering Journal, 2016, 288, 161.
105 Deng Xiaojun, Zhou Ping, Yan Xiayan, et al. Microporous and Mesoporous Materials, 2021, 310, 110618.
106 Deng X J. Preparation of small-pore zeolites bearing gating effect and study on their hydrogen isotopes adsorption. Ph. D. Thesis, China Academy of Engineering Physics, China, 2021 (in Chinese).
邓潇君. 具有孔开关效应的小孔分子筛制备及其氢同位素吸附性能研究. 博士学位论文, 中国工程物理研究院, 2021.
[1] 黄洪涛, 刘阳,王旺. 反应堆结构部件表面阻氢/氘/氚涂层的研究现状及展望[J]. 材料导报, 2023, 37(7): 21050015-7.
[2] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[3] 于海博, 梁帅帅, 李疆, 祁斌. 氧化锆多孔陶瓷制备方法研究进展[J]. 材料导报, 2023, 37(13): 21080217-10.
[4] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[5] 范雷倚, 王锐, 何睿杰, 张瑞阳, 张骞, 周莹. 聚合氯化铝原位改性聚氨酯泡沫用于油水分离[J]. 材料导报, 2022, 36(9): 21040138-7.
[6] 戴飞亮, 付子恩, 蒋金博, 涂伟萍. 有机硅(碳)嵌段共聚物的合成及其应用研究进展[J]. 材料导报, 2022, 36(9): 20070144-12.
[7] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[8] 王杨鑫, 邓强, 李成贵, 温永宇. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 20080197-10.
[9] 肖维新, 袁静, 严开祺, 张敬杰. 生物聚合物气凝胶的制备与应用研究进展[J]. 材料导报, 2022, 36(20): 21030322-10.
[10] 张月, 孙鹏飞, 吕平, 黄微波, 车凯圆, 王荣珍. 自然曝晒条件下聚脲涂层的耐老化性能研究[J]. 材料导报, 2022, 36(2): 21010092-8.
[11] 林长宇, 王启睿, 杨立云, 吴云霄, 李芹涛, 谢焕真, 汪自扬, 张飞. 玄武岩纤维活性粉末混凝土在冲击载荷下的力学行为及本构关系[J]. 材料导报, 2022, 36(19): 21050237-7.
[12] 范雷倚, 王锐, 何睿杰, 张瑞阳, 张骞, 周莹. 离子型聚丙烯酰胺原位修饰聚氨酯泡沫用于高效乳液分离[J]. 材料导报, 2022, 36(19): 21060195-6.
[13] 杨潇, 曹成龙, 胡书, 葛嘉庆, 蒋青松, 盛传祥. 混合卤化物钙钛矿中的光致相分离效应[J]. 材料导报, 2022, 36(16): 20100115-15.
[14] 牛晓勤, 康小雅, 马应霞, 王嘉伟, 陈新权, 田虎, 陈玉红, 冉奋. 新型球状Ni/Co-MOFs电极材料的构筑及电化学性能研究[J]. 材料导报, 2022, 36(14): 21050021-7.
[15] 成晨, 赵燕. 柴油乳化水分离材料的研究进展[J]. 材料导报, 2021, 35(Z1): 536-540.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed