Research Progress in the Preparation Techniques and Mechanical Properties of Nanotwin Strengthened Alloys
HAN Jihong1, ZHANG Yang1,*, MA Yaxi1, LIU Liyuan1, YANG Zhongbo2, ZHANG Zhongwu1,*
1 Key Laboratory of Ultralight Materials and Surface Technology of Ministry of Education, School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China 2 National Key Laboratory of Nuclear Fuel and Materials, China Nuclear Power Research and Design Institute, Chengdu 610041, China
Abstract: In recent years, nanotwin strengthening has received extensive attention because of its ability to increase alloy strength while maintaining good plasticity. In nanotwin strengthening, a twin boundary is a two-dimensional interface obstacle for the movement of dislocations. This interface obstacle can improve the work-hardening rate and tensile strength by reducing the mean free path of dislocations. In addition, the thickness of the twin layer and the strengthening effect follow the Hall-Petch relationship. The thinner the twin layer, the higher is the density of the twin boundaries, and thus, the more frequent is the interaction between the twin boundaries and dislocations. This paper summarized and analyzed the applications of nanotwin strengthening in various alloy systems, including high-entropy alloys, TWIP steels, aluminum alloys, copper alloys and stainless steels. Firstly, the formation mechanism and preparation method of nanoscale deformation twins and nanoscale growth twins are introduced.During the preparation of deformation nanotwins, the movement of Shockley partial dislocations is generally necessary, and the preparation of growth nanotwins requires controlling micro-local stress concentration and stress relaxation. Stress relaxation can release local stress and form low-energy-growth nanotwins. Subsequently, the influence of the stacking fault energy (SFE) on the formation of nanotwins is analyzed. The influence of several alloying elements on the SFE was summarized. Four methods for calculating the SFE were reviewed. Moreover, the general mechanisms of temperature-and strain-rate-coordinated twinning were analyzed, that is, how to coordinate the competition between slip and twinning mechanism. The results show that the preparation of nanotwins requires coordinating the relationship between the alloy system, SFE, temperature, strain rate and twin stress. Finally, the paper discusses the research progress of nanotwin strengthening in terms of mechanical properties. Compared with metals with conventional structures, materials with nanotwins generally exhibit better mechanical properties, especially strength, plasticity and fracture toughness. Nanotwins are also expected to optimize other properties, and the introduction of nanotwins into alloys is expected to provide more opportunities for performance optimization.
作者简介: 韩基鸿,2018年本科毕业于黑龙江工程学院,2020级哈尔滨工程大学硕博连读生,研究方向为纳米孪晶和纳米相强化高熵合金及其辐照效应。 张洋,博士,硕士研究生导师,哈尔滨工程大学副教授。2015年12月博士毕业于山东大学,2014年11月至2016年9月期间在美国宾夕法尼亚州立大学作为联合培养博士研究生和博士后,2016年11月入职哈尔滨工程大学。近五年在国际期刊发表SCI论文20余篇,其中2篇被选为期刊封面文章。研究方向为新型耐辐照核结构材料开发、纳米相强化与层错能调控技术及应用、金属材料动态力学性能等。 张中武,博士,哈尔滨工程大学教授、博士研究生导师,黑龙江省“龙江学者”讲座教授,黑龙江省杰出青年科学基金获得者。获得中国产学研合作创新成果二等奖。获授权专利17项。在国际期刊,如Science Advances、Acta Materialia、International Journal of Plasticity等刊物上发表SCI论文80余篇。在国际学术会议上做包括主题报告(keynote)和邀请报告(invited)在内的学术报告40余篇次,组织国际会议3次。其中以宣讲人身份做大会报告3次、主题报告5次、邀请报告15次。2012年被遴选为美国橡树岭国家实验室网站封面人物,2015年被遴选为科学中国人(2014)年度人物(化工冶金与材料领域)。 研究方向为纳米相强化技术及应用、层错能调控合金设计及变形机制、船舶海工及核能应用新型金属材料、小角中子散射和三维原子探针在合金中的应用等。
引用本文:
韩基鸿, 张洋, 马亚玺, 刘力源, 杨忠波, 张中武. 纳米孪晶强化合金制备技术与力学性能研究进展[J]. 材料导报, 2022, 36(24): 21050108-14.
HAN Jihong, ZHANG Yang, MA Yaxi, LIU Liyuan, YANG Zhongbo, ZHANG Zhongwu. Research Progress in the Preparation Techniques and Mechanical Properties of Nanotwin Strengthened Alloys. Materials Reports, 2022, 36(24): 21050108-14.
1 Li X Y, Lu K. Science, 2019, 364, 733. 2 Olivetti E A, Cullen J M. Science, 2018, 360, 1396. 3 Li X Y, Lu K. Nature Materials, 2017, 16, 700. 4 Lu K. Nature Reviews Materials, 2016, 1, 1. 5 Liddicoat P V, Liao X Z, Zhao Y, et al. Nature Communications, 2010, 1, 63. 6 Wang H T, Tao N R, Lu K. Acta Materialia, 2012, 60, 4027. 7 Zhang Y, Tao N R, Lu K. Acta Materialia, 2011, 59, 6048. 8 Zhang B B, Tao N R, Lu K. Scripta Materialia, 2017, 129, 39. 9 You Z S, Lu L, Lu K. Acta Materialia, 2011, 59, 6927. 10 Yi H Y, Yan F K, Tao N R, et al. Scripta Materialia, 2016, 114, 133. 11 Yi H Y, Yan F K, Tao N R, et al. Materials Science and Engineering: A, 2015, 647, 152. 12 Yan F K, Liu G Z, Tao N R, et al. Acta Materialia, 2012, 60, 1059. 13 Yan F, Li Q, Tao N R. Scripta Materialia, 2018, 142, 15. 14 Xiao G H, Tao N R, Lu K. Scripta Materialia, 2011, 65, 119. 15 Sun L X, Tao N R, Lu K. Scripta Materialia, 2015, 99, 73. 16 Shen Y F, Lu L, Lu Q H, et al. Scripta Materialia, 2005, 52, 989. 17 Lu K, Yan F K, Wang H T, et al. Scripta Materialia, 2012, 66, 878. 18 Lu K, Lu L, Suresh S. Science, 2009, 324, 349. 19 Zhang X, Misra A. Scripta Materialia, 2012, 66, 860. 20 Lu L, Shen Y, Chen X, et al. Science, 2004, 304, 422. 21 He J Y, Wang H, Huang H L, et al. Acta Materialia, 2016, 102, 187. 22 Chen Y T, Yeh A C, Li M Y, et al. Materials & Design, 2017, 119, 235. 23 Liang Y J, Wang L, Wen Y, et al. Nature Communications, 2018, 9, 4063. 24 Jiao Z B, Luan J H, Miller M K, et al. Acta Materialia, 2015, 97, 58. 25 Peng J, Li Z, Fu L, et al. Journal of Alloys and Compounds, 2019, 803, 491. 26 Li Y, Yan W, Cotton J D, et al. Materials & Design, 2015, 82, 56. 27 Wang Y, Sun J, Jiang T, et al. Acta Materialia, 2018, 158, 247. 28 Jiao Z B, Luan J H, Miller M K, et al. Acta Materialia, 2015, 84, 283. 29 Ming K, Bi X, Wang J. Scripta Materialia, 2017, 137, 88. 30 Zhang L, Zhou Y, Jin X, et al. Materials Science and Engineering: A, 2018, 732, 186. 31 Xu S S, Zhao Y, Chen D, et al. International Journal of Plasticity, 2019, 113, 99. 32 Xu S S, Zhao Y, Tong X, et al. Journal of Alloys and Compounds, 2017, 712, 573. 33 Zhang K, Liu P, Li W, et al. Materials Science and Engineering: A, 2018, 716, 87. 34 Jiang S, Wang H, Wu Y, et al. Nature, 2017, 544, 460. 35 Chen A, Liu J, Wang H, et al. Materials Science and Engineering: A, 2016, 667, 179. 36 Li J, Cao Y, Gao B, et al. Journal of Materials Science, 2018, 53, 10442. 37 Wang J, Yang H, Huang H, et al. Materials Science and Engineering: A, 2020, 796, 139974. 38 Slone C E, Miao J, George E P, et al. Acta Materialia, 2019, 165, 496. 39 Deng H W, Xie Z M, Zhao B L, et al. Materials Science and Engineering: A, 2019, 744, 241. 40 Ming K, Bi X, Wang J. International Journal of Plasticity, 2019, 113, 255. 41 Gu J, Ni S, Liu Y, et al. Materials Science and Engineering: A, 2019, 755, 289. 42 Xiong T, Zheng S J, Zhou Y T, et al. Materials Science and Engineering: A, 2018, 720, 231. 43 Fu Z Q, Jiang L, Wardini J L, et al. Science Advances, 2018, 4, eaat8712. 44 ZhuT, Gao H. Scripta Materialia, 2012, 66, 843. 45 Jin Z H, Gumbsch P, Albe K, et al. Acta Materialia, 2008, 56, 1126. 46 Zhang B B, Yan F K, Zhao M J, et al. Acta Materialia, 2018, 151, 310. 47 Kumar G V S, Mangipudi K R, Sastry G V S, et al. Scientific Reports, 2020, 10, 354. 48 Bouaziz O, Scott C P, Petitgand G. Scripta Materialia, 2009, 60, 714. 49 Bouaziz O, Barbier D. Journal of Nanoscience and Nanotechnology, 2012, 12, 8732. 50 Wang S J, Jozaghi T, Karaman I, et al. Materials Science and Engineering: A, 2017, 694, 121. 51 Anderoglu O, Misra A, Wang H, et al. Journal of Applied Physics, 2008, 103, 094322. 52 Haase C, Ingendahl T, Güvenç O, et al. Materials Science and Engineering: A, 2016, 649, 74. 53 Wu W, Guo L, Guo B, et al. Materials Science and Engineering: A, 2019, 759, 574. 54 Xiao X, Song D, Chu H, et al. International Journal of Plasticity, 2015, 74, 110. 55 Xiong L, You Z S, Qu S D, et al. Acta Materialia, 2018, 150, 130. 56 Wei Y, Li Y, Zhu L, et al. Nature Communications, 2014, 5, 3580. 57 Zhang Y, Wang J, Shan H, et al. Scripta Materialia, 2015, 108, 35. 58 Li S, Zhu Q, Zheng B, et al. Materials Science and Engineering: A, 2019, 758, 1. 59 Sun F L, Gao L Y, Liu Z Q, et al. Journal of Materials Science & Technology, 2018, 34, 1885. 60 Cheng G, Li H, Xu G, et al. Scientific Reports, 2017, 7, 12393. 61 Valentino G M, Shetty P P, Chauhan A, et al. Scripta Materialia, 2020, 186, 247. 62 Sathiyamoorthi P, Moon J, Bae J W, et al. Scripta Materialia, 2019, 163, 152. 63 Roy B, Das J. Scientific Reports, 2017, 7, 17512. 64 Huang C X, Hu W P, Wang Q Y, et al. Materials Research Letters, 2014, 3, 88. 65 Sawaguchi T, Bujoreanu L G, Kikuchi T, et al. Scripta Materialia, 2008, 59, 826. 66 Beyerlein I J, Zhang X, Misra A. Annual Review of Materials Research, 2014, 44, 329. 67 Zhu Y T, Liao X Z, Wu X L. Progress in Materials Science, 2012, 57, 1. 68 Huang C X, Wang K, Wu S D, et al. Acta Materialia, 2006, 54, 655. 69 Wang J, Huang H. Applied Physics Letters, 2004, 85, 5983. 70 Yamakov V, Wolf D, Phillpot S, et al. Acta Materialia, 2002, 50, 5005. 71 Laplanche G, Kostka A, Reinhart C, et al. Acta Materialia, 2017, 128, 292. 72 Remy L. Metallurgical Transactions A, 1981, 12, 387. 73 Lingk C, Gross M E. Journal of Applied Physics, 1998, 84, 5547. 74 Chan T C, Lin Y M, Tsai H W, et al. Nanoscale, 2014, 6, 7332. 75 Chaudhari P. Journal of Vacuum Science & Technology A, 1972, 9, 520. 76 Chason E. Thin Solid Films, 2012, 526, 1. 77 Paunovic M, Schlesinger M. Fundamentals of electrochemical deposition, John Wiley & Sons, US, 2006, pp.115. 78 Xu D, Kwan W L, Chen K, et al. Applied Physics Letters, 2007, 91, 254105. 79 Laplanche G, Kostka A, Horst O M, et al. Acta Materialia, 2016, 118, 152. 80 Pierce D T, Jiménez J A, Bentley J, et al. Acta Materialia, 2015, 100, 178. 81 Wang G, Li G, Zhao L, et al. Materials Science and Engineering: A, 2010, 527, 4270. 82 Bufford D, Wang H, Zhang X. Acta Materialia, 2011, 59, 93. 83 Zhao W, Tao N, Guo J, et al. Scripta Materialia, 2005, 53, 745. 84 Bahmanpour H, Youssef K M, Horky J, et al. Acta Materialia, 2012, 60, 3340. 85 Edalati K, Toh S, Iwaoka H, et al. Scripta Materialia, 2012, 67, 814. 86 Liu X, Sun L, Zhu L, et al. Acta Materialia, 2018, 149, 397. 87 Kalsar R, Suwas S. Scripta Materialia, 2018, 154, 207. 88 Wang J J, Tao N R. Scripta Materialia, 2018, 149, 16. 89 Xu Z, Li N, Jiang H, et al. Materials Science and Engineering: A, 2015, 621, 272. 90 Liu G, Gu J, Ni S, et al. Materials Characterization, 2015, 103, 107. 91 Stepanov N, Tikhonovsky M, Yurchenko N, et al. Intermetallics, 2015, 59, 8. 92 Li Y S, Tao N R, Lu K. Acta Materialia, 2008, 56, 230. 93 Zhang Y, Tao N R, Lu K. Acta Materialia, 2008, 56, 2429. 94 Hong C S, Tao N R, Huang X, et al. Acta Materialia, 2010, 58, 3103. 95 Agrawal A K, Singh A. Materials Science and Engineering: A, 2017, 687, 306. 96 Liu S F, Wu Y, Wang H T, et al. Intermetallics, 2018, 93, 269. 97 SchrammR, Reed R. Metallurgical Transactions A, 1975, 6A, 1345. 98 De Cooman B C, Estrin Y, Kim S K. Acta Materialia, 2018, 142, 283. 99 Ghasri-Khouzani M, McDermid J R. Materials Science and Engineering: A, 2015, 621, 118. 100 Lu J, Hultman L, Holmstrm E, et al. Acta Materialia, 2016, 111, 39. 101 Kim J K, De Cooman B C. Materials Science and Engineering: A, 2016, 676, 216. 102 Pierce D T, Jiménez J A, Bentley J, et al. Acta Materialia, 2014, 68, 238. 103 Liu S, Wu Y, Wang H, et al. Journal of Alloys and Compounds, 2019, 792, 444. 104 Xiong R, Peng H, Si H, et al. Materials Science and Engineering: A, 2014, 598, 376. 105 Li Z, Pradeep K G, Deng Y, et al. Nature, 2016, 534, 227. 106 Zaddach A J, Niu C, Koch C C, et al. Jom, 2013, 65, 1780. 107 Dumay A, Chateau J P, Allain S, et al. Materials Science and Engineering: A, 2008, 483-484, 184. 108 Kang M, Woo W, Lee Y K, et al. Materials Letters, 2012, 76, 93. 109 Lehnhoff G R, Findley K O, De Cooman B C. Scripta Materialia, 2014, 92, 19. 110 Jin J E, Lee Y K. Acta Materialia, 2012, 60, 1680. 111 Cuddy L, Leslie W. Acta Metallurgica, 1972, 20, 1157. 112 Olson G B, Cohen M. Metallurgical and Materials Transactions A, 1976, 7A, 1897. 113 Shun T, Wan C, Byrne J. Acta Metallurgica et Materialia, 1992, 40, 3407. 114 Huang T T, Dan W J, Zhang W G. Metallurgical and Materials Tran-sactions A, 2017, 48, 4553. 115 Wang Z W, Wang Y B, Liao X Z, et al. Scripta Materialia, 2009, 60, 52. 116 Shang Y Y, Wu Y, He J Y, et al. Intermetallics, 2019, 106, 77. 117 Li Z. Acta Materialia, 2019, 164, 400. 118 Wang Z, Baker I, Cai Z, et al. Acta Materialia, 2016, 120, 228. 119 Chen L B, Wei R, Tang K, et al. Materials Science and Engineering: A, 2018, 716, 150. 120 Beyramali K M, Asle Z M. Scripta Materialia, 2017, 139, 83. 121 Cockayne D J H, Jenkins M L, Ray I L F. Philosophical Magazine, 1971, 24, 1383. 122 Tian L Y, Lizárraga R, Larsson H, et al. Acta Materialia, 2017, 136, 215. 123 Zhang Y H, Zhuang Y, Hu A, et al. Scripta Materialia, 2017, 130, 96. 124 Chandran M, Sondhi S K. Journal of Applied Physics, 2011, 109, 103525. 125 Shao Q Q, Liu L H, Fan T W, et al. Journal of Alloys and Compounds, 2017, 726, 601. 126 Lu S, Hu Q M, Johansson B, et al. Acta Materialia, 2011, 59, 5728. 127 Okamoto N L, Fujimoto S, Kambara Y, et al. Scientific Reports, 2016, 6, 35863. 128 Xu X D, Liu P, Tang Z, et al. Acta Materialia, 2018, 144, 107. 129 Liu J, Chen C, Xu Y, et al. Scripta Materialia, 2017, 137, 9. 130 Walter M, Mujica Roncery L, Weber S, et al. Journal of Materials Science, 2020, 55, 13424. 131 Lee S J, Jung Y S, Baik S I, et al. Scripta Materialia, 2014, 92, 23. 132 Rafaja D, Krbetschek C, Ullrich C, et al. Journal of Applied Crystallography, 2014, 47, 936. 133 Curtze S, Kuokkala V T. Acta Materialia, 2010, 58, 5129. 134 Curtze S, Kuokkala V T, Oikari A, et al. Acta Materialia, 2011, 59, 1068. 135 Peng X, Zhu D, Hu Z, et al. Materials & Design, 2013, 45, 518. 136 Li Q, Zhang T W, Qiao J W, et al. Journal of Alloys and Compounds, 2020, 816, 152663. 137 Li W, Lu S, Hu Q M, et al. Journal of Physics Condensed Matter, 2014, 26, 265005. 138 Aerts E, Delavignette P, Siems R, et al. Journal of Applied Physics, 1962, 33, 3078. 139 Reed R P, Schramm R E. Journal of Applied Physics, 1974, 45, 4705. 140 Williamson G, Hall W. Acta Metallurgica, 1953, 1, 22. 141 Cao F, Beyerlein I J, Addessio F L, et al. Acta Materialia, 2010, 58, 549. 142 Gray G T. Annual Review of Materials Research, 2012, 42, 285. 143 Wang B, He H, Naeem M, et al. Scripta Materialia, 2018, 155, 54. 144 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345, 1153. 145 Guo Z, Zhao M, Li C, et al. Materials Science and Engineering: A, 2012, 555, 77. 146 Chen A Y, Ruan H H, Wang J, et al. Acta Materialia, 2011, 59, 3697. 147 Christian J W, Mahajan S. Progress in Materials Science, 1995, 39, 1. 148 Naeem M, He H, Zhang F, et al. Science Advances, 2020, 6, eaax4002. 149 Venables J A. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 2006, 7, 35. 150 Huang S, Li W, Lu S, et al. Scripta Materialia, 2015, 108, 44. 151 Kim H, Ha Y, Kwon K H, et al. Acta Materialia, 2015, 87, 332. 152 Wang B, Zhang Z, Cui J, et al. ACS Applied Materials & Interfaces, 2017, 9, 29451. 153 You Z, Li X, Gui L, et al. Acta Materialia, 2013, 61, 217. 154 Gu P, Dao M, Zhu Y. Philosophical Magazine, 2014, 94, 1249. 155 Li X, Wei Y, Lu L, et al. Nature, 2010, 464, 877. 156 Luo Z F, Liang Y L, Long S L, et al. Materials Science and Engineering: A, 2017, 690, 225. 157 Lu L, Chen X, Huang X, et al. Science, 2009, 323, 607. 158 Kamikawa N, Huang X, Tsuji N, et al. Acta Materialia, 2009, 57, 4198. 159 Dao M, Lu L, Shen Y F, et al. Acta Materialia, 2006, 54, 5421. 160 Davies R. Metallurgical Transactions A, 1978, 9, 671. 161 Moon J, Bouaziz O, Kim H S, et al. Scripta Materialia, 2021, 197, 113808. 162 Mirkhani H, Joshi S P. Journal of the Mechanics and Physics of Solids, 2014, 68, 107. 163 Kocks U F. Journal of Engineering Materials and Technology, 1976, 98, 76. 164 Launey M E, Ritchie R O. Advanced Materials, 2009, 21, 2103. 165 Zeng Z, Li X, Lu L, et al. Acta Materialia, 2015, 98, 313. 166 Kim S W, Li X, Gao H, et al. Acta Materialia, 2012, 60, 2959. 167 Shan Z, Lu L, Minor A, et al. Jom, 2008, 60, 71.