Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 696-707    https://doi.org/10.11896/j.issn.1005-023X.2018.05.002
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
陷光结构应用于太阳能电池的研究进展
何苗, 陈建林, 周厅, 彭卓寅, 任延杰, 陈荐
长沙理工大学能源与动力工程学院;能源高效清洁利用湖南省高校重点实验室,长沙 410114
Applying Light Trapping Structure to Solar Cells: an Overview
HE Miao, CHEN Jianlin, ZHOU Ting, PENG Zhuoyin, REN Yanjie, CHEN Jian
School of Energy and Power Engineering, Changsha University of Science and Technology; Key Laboratory of Efficient and Clean Energy Utilization, Colleges of Hunan Province, Changsha 410114
下载:  全 文 ( PDF ) ( 6981KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在太阳能电池中引入陷光结构是提高光电转换效率的一种重要方法。本文主要从晶体硅太阳能电池、薄膜太阳能电池和其他新型太阳能电池三方面,综述了近年来国内外陷光结构用于太阳能电池的最新研究进展,分析了陷光结构对各类太阳能电池性能的影响、陷光作用的原理及工艺手段,最后指出其发展潜力及未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何苗
陈建林
周厅
彭卓寅
任延杰
陈荐
关键词:  陷光  太阳能电池  光电转换效率    
Abstract: Introducing light trapping structure in solar cells is one of the important approaches for improving photovoltaic conversion efficiency. This article reviews the recent progress of light trapping structure in view of different-typed solar cells including crystalline silicon solar cells, thin film solar cells and other novel solar cells. The influence of light trapping structure on the perfor-mance of different solar cells, the light trapping mechanism and the process of preparing light trapping structure have been analyzed. Finally, the extensive application and future research of light trapping structure for solar cells have been pointed out.
Key words:  light trapping    solar cell    photovoltaic conversion efficiency
               出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51172031);湖南省研究生科研创新项目(CX2017B481)
通讯作者:  陈建林:通信作者,男,1975年生,副教授,主要从事太阳能转换与利用技术研究 E-mail:cjlinhunu@csust.edu.cn   
作者简介:  国家自然科学基金(51172031);湖南省研究生科研创新项目(CX2017B481)
何苗:女,1991年生,硕士研究生,主要从事薄膜太阳能电池研究 E-mail:hemiaot@163.com
引用本文:    
何苗, 陈建林, 周厅, 彭卓寅, 任延杰, 陈荐. 陷光结构应用于太阳能电池的研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 696-707.
HE Miao, CHEN Jianlin, ZHOU Ting, PENG Zhuoyin, REN Yanjie, CHEN Jian. Applying Light Trapping Structure to Solar Cells: an Overview. Materials Reports, 2018, 32(5): 696-707.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.002  或          http://www.mater-rep.com/CN/Y2018/V32/I5/696
1 Abdullah M F, Alghoul M A, Naser H, et al. Research and deve-lopment efforts on texturization to reduce the optical losses at front surface of silicon solar cell[J].Renewable & Sustainable Energy Reviews,2016,66:380.
2 Mendes M J, Araújo A, Vicente A, et al. Design of optimized wave-optical spheroidal nanostructures for photonic-enhanced solar cells[J].Nano Energy,2016,26:286.
3 Andreani L C, Bozzola A, Kowalczewski P, et al. Photonic light trapping and electrical transport in thin-film silicon solar cells[J].Solar Energy Materials & Solar Cells,2015,135(1):78.
4 Qin F, Zhang H, Wang C, et al. Anodic aluminum oxide nanogra-ting for back light trapping in thin c-Si solar cells[J].Optics Communications,2014,331(22):325.
5 Gordon I, Conibeer G, Krc J, et al. Nanoimprint-textured glass superstrates for light trapping in crystalline silicon thin-film solar cells[J].Energy Procedia,2015,84:118.
6 Jovanov V, Moulin E, Haug F J, et al. From randomly self-textured substrates to highly efficient thin film solar cells: Influence of geometric interface engineering on light trapping, plasmonic losses and charge extraction[J].Solar Energy Materials & Solar Cells,2017,160:141.
7 Xu Z, Huangfu H, He L, et al. Light-trapping properties of the Si inclined nanowire arrays[J].Optics Communications,2017,382:332.
8 Bu Y Y, Chen S. Improved crystalline silicon solar cells by light harvesting zinc oxide nanowire arrays[J].Optik-International Journal for Light and Electron Optics,2016,127(22):10355.
9 Zhang A, Guo Z. Efficient light trapping in tapered silicon nanohole arrays[J].Optik-International Journal for Light and Electron Optics,2016,127(5):2861.
10 Miskevich A A, Loiko V A. Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles[J].Journal of Quantitative Spectroscopy & Radiative Transfer,2015,167:23.
11 Wang B, Gao T, Leu P W. Broadband light absorption enhancement in ultrathin film crystalline silicon solar cells with high index of refraction nanosphere arrays[J].Nano Energy,2016,19:471.
12 Pfeffer F, Eisenlohr J, Basch A, et al. Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells[J].Solar Energy Materials & Solar Cells,2016,152:80.
13 Lindroos J, Savin H. Review of light-induced degradation in crystalline silicon solar cells[J].Solar Energy Materials & Solar Cells,2016,147:115.
14 Tucher N, Eisenlohr J, Hauser H, et al. Crystalline silicon solar cells with enhanced light trapping via rear side diffraction grating[J].Energy Procedia,2015,77:253.
15 Jing R, Varlamov S. Light trapping in thin film polycrystalline silicon solar cell using diffractive gratings[J].Energy Procedia,2013,33:129.
16 Eisenlohr J, Lee B G, Benick J, et al. Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells[J].Solar Energy Materials & Solar Cells,2015,142:60.
17 Huang Y, Sahraei N, Widenborg P I, et al. Enhanced light trapping in polycrystalline silicon thin-film solar cells using plasma-etched submicron textures[J].Solar Energy Materials & Solar Cells,2014,122(3):146.
18 Han K M, Cho J S, Yoo J. Monocrystalline-like silicon solar cells fabricated by wet and dry texturing processes for improving light-trapping effect[J].Vacuum,2015,115:85.
19 Lalouat L, Ding H, Gonzalez-Acevedo B, et al. Pseudo-disordered structures for light trapping improvement in mono-crystalline Si thin-films[J].Solar Energy Materials & Solar Cells,2015,159:649.
20 Wu L, Zhang H, Qin F, et al. Performance enhancement of pc-Si solar cells through combination of anti-reflection and light-trapping:Functions of AAO nano-grating[J].Optics Communications,2017,385:205.
21 Sammito D, Zilio P, Zacco G, et al. Light trapping properties of metallic gratings on wafer-based silicon solar cells[J].Nano Energy,2013,2(3):337.
22 Bai Y, Gao Z, Chen N, et al. Elimination of small-sized Ag nano-particles via rapid thermal annealing for high efficiency light trapping structure[J].Applied Surface Science,2014,315(1):1.
23 Jr M F H, Chen C, Yue K, et al. Controlled faceting and morphology for light trapping in aluminum-catalyzed silicon nanostructures[J].Journal of Crystal Growth,2016,452:248.
24 Liu Y, Zi W, Liu S, et al. Effective light trapping by hybrid nanostructure for crystalline silicon solar cells[J].Solar Energy Materials & Solar Cells,2015,140:180.
25 Wang B, Leu P W. High index of refraction nanosphere coatings for light trapping in crystalline silicon thin film solar cells[J].Nano Energy,2015,13:226.
26 Cui H, Green M, Campbell P, et al. A photovoltaic light trapping estimation method for textured glass based on surface decoupling calculation[J].Solar Energy Materials & Solar Cells,2013,109(5):82.
27 Hsu W C, Tong J K, Branham M S, et al. Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells[J].Optics Communications,2016,377:52.
28 Stapf A, Honeit F, Gondek C, et al. Texturing of monocrystalline silicon wafers by HF-HCl-H2O2 mixtures:Generation of random in-verted pyramids and simulation of light trapping in PERC solar cells[J].Solar Energy Materials & Solar Cells,2017,159:112.
29 Amalathas A P, Alkaisi M M. Efficient light trapping nanopyramid structures for solar cells patterned using UV nanoimprint lithography[J].Materials Science in Semiconductor Processing,2017,57:54.
30 Fang X, Li Y, Wang X, et al. Ultrathin interdigitated back-contacted silicon solar cell with light-trapping structures of Si nanowire arrays[J].Solar Energy,2015,116:100.
31 Feng Z, Jia R, Dou B, et al. Enhanced properties of silicon nano-textured solar cells enabled by controlled ZnO nanorods coating[J].Solar Energy,2015,115:770.
32 Hsueh T J, Hsu C L, Shieh J M, et al. Crystalline-Si photovoltaic devices with ZnO nanowires[J].Solar Energy Materials & Solar Cells,2012,98(5):494.
33 Altinoluk S H, Ciftpinar H E, Demircioglu O, et al. Light trapping by micro and nano-hole texturing of single-crystalline silicon solar cells[J].Energy Procedia,2016,92:291.
34 Lee C L, Goh W S, Chee S Y, et al. Enhancement of light harvesting efficiency of silicon solar cell utilizing arrays of poly(methyl methacrylate-co-acrylic acid) nano-spheres and nano-spheres with embedded silver nano-particles[J].Photonics and Nanostructures-Fundamentals and Applications,2017,23:36.
35 Eisenlohr J, Tucher N, Hauser H, et al. Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping[J].Solar Energy Materials & Solar Cells,2016,155:288.
36 Lin G S, Li C Y, Huang K C, et al. Using chemical wet-etching methods of textured AZO films on a-Si∶H solar cells for efficient light trapping[J].Materials Chemistry & Physics,2015,160:264.
37 Wu J. Enhanced light trapping with double-groove grating in thin-film amorphous silicon solar cells[J].Optics & Laser Technology,2016,79:95.
38 Zhang J, Li J, Zheng L, et al. Simultaneous realization of light distribution and trapping in micromorph tandem solar cells using novel double-layered antireflection coatings[J].Solar Energy Materials & Solar Cells,2015,143:546.
39 Li J, Lu Y, Huang J, et al. Facile preparation of micron-and nano-scale textured master for nano-imprinting front electrode in thin-film silicon tandem cells with improved light trapping[J].Solar Energy,2015,115:518.
40 Lee W, Hwang T, Lee S, et al. Organic-acid texturing of transpa-rent electrodes toward broadband light trapping in thin-film solar cells[J].Nano Energy,2015,17:180.
41 Seba H Y, Hadjersi T, Zebbar N. Bragg mirrors porous silicon back reflector for the light trapping in hydrogenated amorphous silicon[J]. Applied Surface Science,2015,350:57.
42 Iftiquar S M, Jung J, Shin C, et al. Light management for enhanced efficiency of textured n-i-p type amorphous silicon solar cell[J]. Solar Energy Materials & Solar Cells,2015,132:348.
43 Jovanov V, Planchoke U, Magnus P, et al. Influence of back contact morphology on light trapping and plasmonic effects in microcrystalline silicon single junction and micromorph tandem solar cells[J].Solar Energy Materials & Solar Cells,2013,110(3):49.
44 Hussain S Q, Ahn S H, Park H, et al. Light trapping scheme of ICP-RIE glass texturing by SF 6/Ar plasma for high haze ratio[J].Vacuum,2013,94(94):87.
45 Xu Z P, Huangfu H C, Li X W, et al. Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells[J].Optics Communications,2016,377:104.
46 Chen P, Hou G, Fan Q, et al. Combining randomly textured surfaces and one-dimensional photonic crystals as efficient light-trapping structures in hydrogenated amorphous silicon solar cells[J].Solar Energy Materials & Solar Cells,2015,143:435.
47 Da Y, Xuan Y, Li Q, et al. From light trapping to solar energy utilization: A novel photovoltaic-thermoelectric hybrid system to fully utilize solar spectrum[J].Energy,2016,95:200.
48 Feltrin A, Meguro T, Assche E V, et al. Advanced light trapping designs for high efficiency thin film silicon solar cells[J].Solar Energy Materials & Solar Cells,2013,119(12):219.
49 Tamang A, Hongsingthong A, Sichanugrist P, et al. On the potential of light trapping in multiscale textured thin film solar cells[J].Solar Energy Materials & Solar Cells,2016,144(6):300.
50 Wang D L, Cui H J, Su G. A modeling method to enhance the conversion efficiency by optimizing light trapping structure in thin-film solar cells[J].Solar Energy,2015,120:505.
51 Wang H, Gao F, Wu Y, et al. Effect of nanopits size and spacing on the light absorption in silicon thin film solar cells[J].Optik-International Journal for Light and Electron Optics,2015,127(3):1003.
52 Khan S, Hussain S Q, Hwang D, et al. Light trapping by hydrothermally deposited zinc oxide nanostructures with high haze ratio[J].Materials Science in Semiconductor Processing,2015,37:51.
53 Iftiquar S M, Jung J, Park H, et al. Effect of light trapping in an amorphous silicon solar cell[J].Thin Solid Films,2015,587:117.
54 Chen A, Yuan Q, Zhu K. ZnO/a-Si distributed Bragg reflectors for light trapping in thin film solar cells from visible to infrared range[J].Applied Surface Science,2016,360:693.
55 Nowak R E, Vehse M, Sergeev O, et al.ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells[J].Solar Energy Materials & Solar Cells,2014,125(5):305.
56 Zhang W, Zheng G G, Li X Y. Design of light trapping structures for light-absorption enhancement in thin film solar cells[J].Optik-International Journal for Light and Electron Optics,2013,124(16):2531.
57 Huang L, Jin J, Yuan Z, et al. Characterization and FDTD simulation analysis on light trapping structures of amorphous silicon thin films by laser irradiation[J].Superlattices & Microstructures,2016,93:290.
58 Lockau D, Sontheimer T, Preidel V, et al. Advanced microhole arrays for light trapping in thin film silicon solar cells[J].Solar Energy Materials & Solar Cells,2014,125(6):298.
59 Zi W, Hu J, Ren X, et al. Modeling of triangular-shaped substrates for light trapping in microcrystalline silicon solar cells[J].Optics Communications,2017,383:304.
60 Bai L, Liu B, Fan J, et al. The trade-off of light trapping between top and bottom cell in micromorph tandem solar cells with sputtering ZnO∶Al glass substrate[J].Journal of Power Sources,2014,266(1):138.
61 Wang Y, Zhang X, Han B, et al. UV micro-imprint patterning for tunable light trapping in p-i-n thin-film silicon solar cells[J].Applied Surface Science,2015,355:14.
62 Wang Y, Ding W, Wang H, et al. Effective improvement of light trapping from double-textured ZnO∶Al transparent conducting films[J].Materials Letters,2015,149:37.
63 Smirnov V,Bttler W,Hüpkes J,et al.ZnO based back reflectors with a wide range of surface morphologies for light trapping in n-i-p microcrystalline silicon solar cells[J].Energy Procedia,2014,44(44):223.
64 Zhang X, Johansson E M J. Utilizing light trapping interference effects in microcavity structured colloidal quantum dot solar cells: A combined theoretical and experimental approach[J].Nano Energy,2016,28:71.
65 Dewan R, Shrestha S, Jovanov V, et al. Random versus periodic: Determining light trapping of randomly textured thin film solar cells by the superposition of periodic surface textures[J].Solar Energy Materials & Solar Cells,2015,143:183.
66 Zi W, Ren X, Xiao F, et al. Ag nanoparticle enhanced light trapping in hydrogenated amorphous silicon germanium solar cells on flexible stainless steel substrate[J]. Solar Energy Materials & Solar Cells, 2016, 144:63.
67 Liu B, Bai L, Zhang X, et al. Light management in hydrogenated amorphous silicon germanium solar cells[J].Solar Energy Materials & Solar Cells,2014,128(9):1.
68 Mellor A, Hylton N P, Maier S A, et al. Interstitial light-trapping design for multi-junction solar cells[J].Solar Energy Materials & Solar Cells,2017,159:212.
69 Yin G, Manley P, Schmid M. Light absorption enhancement for ultra-thin Cu(In1-xGax)Se2, solar cells using closely packed 2-D SiO2, nanosphere arrays[J].Solar Energy Materials & Solar Cells,2016,153:124.
70 Bai A, Tang Y, Chen J. Efficient photon capturing in Cu(In,Ga)-Se2, thin film solar cells with ZnO nanorod arrays as an antireflective coating[J].Chemical Physics Letters,2015,636:134.
71 Heinemann M D, Ruske F, Greiner D, et al. Advantageous light management in Cu(In,Ga)Se2, superstrate solar cells[J].Solar Energy Materials & Solar Cells,2016,150:76.
72 Zhang X, Chen L, Pan H, et al. Light-trapping photoanode using high refractive index rutile TiO2, microspheres as sandwiched layer[J].Thin Solid Films,2014,573:107.
73 Que Y P, Weng J, Hu L H, et al. High open voltage and superior light-harvesting dye-sensitized solar cells fabricated by flower-like hierarchical TiO2 composed with highly crystalline nanosheets[J].Journal of Power Sources,2016,307:138.
74 Wei Z, Wang M, Yuan L, et al. Semi-closed tubular light-trapping geometry dye sensitized solar cells with stable efficiency in wide light intensity range[J].Journal of Power Sources,2014,261(3):75.
75 Zhao J, Yang Y, Cui C, et al. TiO2, hollow spheres as light scatte-ring centers in TiO2, photoanodes for dye-sensitized solar cells: The effect of sphere diameter[J].Journal of Alloys & Compounds,2016,663:211.
76 Deng J, Wang M, Zhang P, et al. Preparing ZnO nanowires in mesoporous TiO2 photoanode by an in-situ hydrothermal growth for enhanced light-trapping in quantum dots-sensitized solar cells[J].Electrochimica Acta,2016,200:12.
77 Li C, Zhu H, Wang Y, et al. High performance polymer solar cells with electron extraction and light-trapping dual functional cathode interfacial layer[J].Nano Energy,2017,31:201.
78 Parvin P, Reyhani A, Mehrabi M, et al. Efficiency enhancement using ArF laser induced micro/nanostructures on the polymeric layer of solar cell[J].Optics & Laser Technology,2017,88:242.
79 He Y, Liu C, Jiang H, et al. The light trapping enhancement of inverted polymer solar cells by introducing NaYF4 nanoparticles[J].Synthetic Metals,2014,195:117.
80 Cai C, Zhang Y, Song R, et al. Polymer solar cells spray coated with non-halogenated solvents[J].Solar Energy Materials & Solar Cells,2017,161:52.
81 Dong J W, Cheng Y S, Gau C. Polymer solar cells with light-trapping structure connected in series by soft contact lamination process[J].Organic Electronics,2014,15(12):3487.
82 Abdelraouf O A M, Allam N K. Towards nanostructured perovskite solar cells with enhanced efficiency: Coupled optical and electrical modeling[J].Solar Energy,2016,137:364.
83 Sun H, Peng R, Bao Z, et al. Shell-in-shell TiO2, hollow microspheres and optimized application in light-trapping perovskite solar cells[J].Solid State Sciences,2015,40:60.
84 Xing Y, Sun C, Yip H L, et al. New fullerene design enables efficient passivation of surface traps in high performance p-i-n heterojunction perovskite solar cells[J].Nano Energy,2016,26:7.
85 Yu X, Yu X, Zhang J, et al. Effective light trapping enhanced near-UV/blue light absorption in inverted polymer solar cells via sol-gel textured Al-doped ZnO buffer layer[J].Solar Energy Materials & Solar Cells,2014,121(4):28.
86 Yu X, Yu X, Hu Z, et al. Effect of sol-gel derived ZnO annealing rate on light-trapping in inverted polymer solar cells[J].Materials Letters,2013,108(10):50.
87 Cheng P P, Zhou L, Li J A, et al. Light trapping enhancement of inverted polymer solar cells with a nanostructured scattering rear electrode[J].Organic Electronics,2013,14(9):2158.
88 Lampande R, Kim G W, Mi J P, et al. Efficient light harvesting in inverted polymer solar cells using polymeric 2D-microstructures[J].Solar Energy Materials & Solar Cells,2016,151:162.
89 Yu X, Yu X, Zhang J, et al. Efficient light-trapping in inverted polymer solar cells based on textured FTO transparent electrodes[J].Materials Letters,2014,130(3):75.
[1] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[2] 曾祥花, 李战峰, 任静琨, 刘伟鹏, 陈今波, 王向坤, 郝玉英. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 《材料导报》期刊社, 2018, 32(9): 1423-1426.
[3] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[4] 甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
[5] 彭家奕, 夏雪峰, 江奕华, 邹敏华, 王晓峰, 李璠. 无机电荷传输层在有机-无机杂化钙钛矿太阳能电池中的应用及研究进展[J]. 材料导报, 2018, 32(23): 4027-4040.
[6] 李博, 徐晓婷, 郑雪晴. 离子液体在有机光电转换器件中的应用研究进展[J]. 材料导报, 2018, 32(23): 4116-4124.
[7] 杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
[8] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[9] 谭海军, 何敬文, 裴海睿, 李和平, 张淑芬, 张淑华. 吩噻嗪和吩噁嗪给电子体在染料敏化太阳能电池中的性能对比分析[J]. 材料导报, 2018, 32(15): 2538-2541.
[10] 邹金龙, 罗玉峰, 肖宗湖, 胡云, 饶森林, 刘绍欢. 空穴传输材料在高效钙钛矿太阳能电池中的发展演变[J]. 材料导报, 2018, 32(15): 2542-2554.
[11] 周丹, 秦元成, 徐海涛, 李明俊. 有机太阳能电池阴极界面层概述[J]. 材料导报, 2018, 32(13): 2143-2150.
[12] 陈健, 缪卫峰, 王吉林, 郑国源, 龙飞. 浅析有机金属卤化物钙钛矿太阳能电池稳定性的研究[J]. 材料导报, 2018, 32(13): 2151-2160.
[13] 陈皓然, 夏英东, 陈永华, 黄维. 低维钙钛矿:兼具高效率和稳定性的新型太阳能电池光吸收层候选材料[J]. 材料导报, 2018, 32(1): 1-11.
[14] 刘萍, 曾葆青, 王亚雄, 汪江浩. 纳米线透明导电薄膜的制备及在光电器件中的应用*[J]. 《材料导报》期刊社, 2017, 31(7): 6-18.
[15] 李昱煜,沈沪江,刘岩,王炜,袁慧慧,谢华清. PEDOT基对电极染料敏化太阳能电池研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 19-25.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed