Please wait a minute...
材料导报  2018, Vol. 32 Issue (1): 1-11    https://doi.org/10.11896/j.issn.1005-023X.2018.01.001
     材料与可持续发展(一)—— 面向洁净能源的先进材料 |
低维钙钛矿:兼具高效率和稳定性的新型太阳能电池光吸收层候选材料
陈皓然1(),夏英东1,陈永华1(),黄维1,2,3
1 南京工业大学先进材料研究院,南京 211816
2 西北工业大学陕西柔性电子研究院,西安 710072
3 南京邮电大学信息材料与纳米技术研究院,南京 210023
Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability
Haoran CHEN1(),Yingdong XIA1,Yonghua CHEN1(),Wei HUANG1,2,3
1 Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816;
2 Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072;
3 Key Laboratory for Organic Electronics & Information Displays (KLOEID), and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023;
下载:  全 文 ( PDF ) ( 1712KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 

使用有机无机杂化钙钛矿材料作为光吸收层的钙钛矿太阳能电池自进入人们的视野以来,其制备工艺和器件结构不断得到优化,短短几年内效率取得了非常可观的增长。与此同时,这种基于三维钙钛矿材料的电池的缺点也越来越突出,尤其是材料的不稳定性,严重阻碍了其发展。低维钙钛矿材料具有有机胺层与无机层(金属卤化物钙钛矿晶体)之间相互交替的低维(层状)结构,其中被有机胺隔开的独立钙钛矿层中八面体的层数n越小,钙钛矿越接近二维结构。相比传统三维钙钛矿结构,低维钙钛矿材料应用于光伏器件具有两大优势:(1)耐湿性、光热稳定性大大增强;(2)可以通过改变n和插入的有机胺的种类来实现光学及电学性质的可调性。

然而,低维钙钛矿具有较大的光学带隙,有机胺的引入降低了载流子迁移率,导致低维钙钛矿电池的效率明显低于三维钙钛矿电池。因此,近三年来除研究钙钛矿层数对材料性质和器件性能的影响外,研究者们主要从选择合适的有机胺和优化薄膜制备工艺方面不断尝试,并取得了丰硕的成果,在充分发挥低维钙钛矿稳定性优势的同时大幅提升了器件效率。目前,低维钙钛矿太阳能电池的光电转换效率已由2014年的4.37%跃升至13.7%。

在较高效率的低维钙钛矿太阳能电池中已取得成功应用的有机胺类包括苯乙胺(PEA)、正丁胺(n-BA)、异丁胺(iso-BA)、聚乙烯亚胺(PEI)等。其中PEA应用得最早;n-BA是运用在目前为止最高效的低维钙钛矿电池中的有机胺;而PEI插层形成的低维钙钛矿拥有相对更小的光学带隙和更高的耐湿性,但载流子的传输会受到更大的限制。低维钙钛矿薄膜的制备起初主要采用简单的一步旋涂法,但此法所得的低维钙钛矿平行于基底生长,器件效率很低。近两年的研究工作将基底预热、浸泡、反溶剂滴加等手段引入到钙钛矿旋涂工艺中,实现了低维钙钛矿优先垂直基底生长,为突破低效率瓶颈提供了可能。此外,以三维钙钛矿为基础,以有机胺为添加剂,制得的二维和三维混合的钙钛矿结构,也可以实现器件效率和稳定性的双提升。

本文归纳了低维钙钛矿光伏器件的研究进展,分别对低维钙钛矿的分子结构、插入的有机胺的选择、钙钛矿薄膜的制备方法等进行介绍,分析了低维钙钛矿太阳能电池面临的问题并展望其前景,以期为制备稳定和环境友好的新型钙钛矿太阳能电池提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈皓然
夏英东
陈永华
黄维
关键词:  低维钙钛矿  太阳能电池  有机胺  层状钙钛矿  光伏器件    
Abstract: 

Since the emergence of organic-inorganic hybrid perovskite materials as light harvesters, the perovskite solar cells have attained a considerable efficiency improvement due to notable achievements in optimizing the fabrication process and device structure, while nevertheless been suffering increasingly serious challenges, especially instability. Layered (low-dimensional) perovskite materials are constructed based on a periodical (or quasi-periodical, or hybridized) structure which is composed of alternate layers of organic amines and metal halide perovskite crystals. The layered structure approximates to a two-dimensional structure whilst the number (n) of planes, which consist of the pyramids’ squares of the perovskite octahedrons, within one separated perovskite layer approaches 1. For photovoltaic application, these low-dimensional perovskite structures have two advantages compared to their three-dimensional counterparts: I. remarkably enhanced moisture resistance and thermal stability; II. tunable optical and electrical characteristics by varying n and selecting different organic amines.

On the other hand, poor carrier mobility (a consequence of the inhibition of out-of-plane charge transport by the organic amine cations) and wide band gap contribute to a far lower efficiency of low-dimensional perovskite solar cell than three-dimensional perovskite device. This urges intensive research endeavors to seek favorable organic amines and optimize perovskite film fabrication process, aiming at boosting photovoltaic efficiency while exploiting layered perovskite’s stability. And in the past three years, impressive strides have been made in promoting the low-dimensional perovskite solar cells, with a giant leap in the reported power conversion efficiency (PCE) from 4.37% to 13.7%.

Phenethylamine (PEA), n-butylamine (n-BA), isobutylamine (iso-BA), polyethylenimine (PEI), etc. have been found to be satisfactory as the hydrophobic amine interlayers for relatively-high-efficiency layered perovskite solar cells. PEA is the first to be involved in the attempts, and the n-BA-intercalated perovskite hold the currently highest efficiency of this new type of photovoltaic devices. PEI intercalation appears to result in narrower band gap and higher moisture resistance, but also leads to a larger inhibition to the carrier transport. Although one-step spin coating provides a facile route to obtain layered perovskite films, this method will cause the horizontal growth (i.e. interlayers parallel to substrate) of the layered structure and in consequence, an extremely low cell efficiency. Works in the past two years have established a new avenue to overcome the low-efficiency bottleneck, by introducing various techniques into the spin coating process, e.g. hot casting, immersion (in short-chain amines), antisolvent dripping, all of which have successfully achieved the preferential out-of-plane alignment of the inorganic perovskite layers. Besides, researchers also have demonstrated that the 2D-3D hybrid perovskite structures, which can be constructed on the basis of 3D perovskite with the presence of organic amine additives, can gain improvements in terms of both efficiency and stability.

This review offers a retrospection of the research efforts with respect to the layered (low-dimensional) perovskite photovoltaic devices, and provides elaborate descriptions about the structure of low-dimensional perovskite, the selection of the intercalating organic amines, and the film fabrication process. We then pay attention to the problems confronting the current state-of-the-art low-dimensional perovskite solar cells. We have confidence that the low-dimensional perovskite solar cells have a bright future in the development and innovation of stable and environmental-friendly photovoltaic devices.

Key words:  low-dimensional perovskite    solar cell    organic amine    layered perovskite    photovoltaic device
               出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TM914.4+2  
基金资助: 国家重点基础研究发展计划项目(2015CB932200);中组部“千人计划”青年项目;国家自然科学基金委青年项目(51035063);江苏特聘教授(54907024);江苏省自然科学基金青年科学基金项目(55135039)
作者简介:  陈皓然:女,1996年生,博士研究生,主要研究方向为低维钙钛矿光伏器件 E-mail: 247944066@qq.com
引用本文:    
陈皓然, 夏英东, 陈永华, 黄维. 低维钙钛矿:兼具高效率和稳定性的新型太阳能电池光吸收层候选材料[J]. 材料导报, 2018, 32(1): 1-11.
Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability. Materials Reports, 2018, 32(1): 1-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.001  或          http://www.mater-rep.com/CN/Y2018/V32/I1/1
  
  
  
  
  
  
  
  
  
  
  
  
[1] Lee M M, Teuscher J, Miyasaka T , et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012,338(6107):643.
[2] Wehrenfennig C, Eperon G E, Johnston M B , et al. High charge carrier mobilities and lifetimes in organo lead trihalide perovskites[J]. Advanced Materials, 2013,26(10):1584.
[3] Innocenzo V, Grancini G , Alcocer M J P, et al. Excitons versus free charges in organo-lead tri-halide perovskites[J]. Nature Communications, 2014,5(4):3586.
[4] You J, Hong Z, Yang Y M , et al. Low-Temperature solution-processed perovskite solar cells with high efficiency and flexibility[J]. ACS Nano, 2014,8(2):1674.
[5] Liu M, Johnston M B, Snaith H J . Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013,501(7467):395.
[6] Xiao M, Huang F, Huang W , et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells[J]. Angewandte Chemie International Edition, 2014,53(37):9898.
[7] Liang P, Liao C, Chueh C , et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Advanced Materials, 2014,26(22):3748.
[8] Xiao Z, Bi C, Shao Y , et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy & Environment Science, 2014,7(8):2619.
[9] Burschka J, Pellet N, Moon S , et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013,499(7458):316.
[10] Zhao Y, Zhu K . Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J]. Chemical Society Reviews, 2016,45(3):655.
[11] KojimaA, Teshima K, Shirai Y , et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009,131(17):6050.
[12] YangW S, Park B W, Jung E H , et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017,356:1376.
[13] Niu G, Li W, Meng F , et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells[J]. Journal of Materials Chemistry A, 2014,2(3):705.
[14] Wang Z, Shi Z, Li T , et al. Stability of perovskite solar cells: A prospective on the substitution of the A Cation and X anion[J]. Angewandte Chemie International Edition, 2017,129(5):1210.
[15] EperonG E, Stranks S D, Menelaou C , et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014,7(3):982.
[16] ChenY, Chen T, Dai L . Layer-by-layer growth of CH3NH3PbI3-x-Clx for highly efficient planar heterojunction perovskite solar cells[J]. Advanced Materials, 2015,27(6):1053.
[17] EperonG E, Beck C E, Snaith H J . Cation exchange for thin film lead iodide perovskite interconversion[J]. Materials Horizons, 2015,3(1):63.
[18] QuanL N, Yuan M, Comin R , et al. Ligand-stabilized reduced-dimensionality perovskites[J]. Journal of the American Chemical Society, 2016,138(8):2649.
[19] PengW, Yin J, Ho K , et al. Ultralow self-doping in two-dimensional hybrid perovskite single crystals[J]. Nano Letters, 2017,17(8):4759.
[20] Lin Y, Bai Y, Fang Y , et al. Suppressed ion migration in low-dimensional perovskites[J]. ACS Energy Letters, 2017(2):1571.
[21] GreenM A, Ho-Baillie A, Snaith H J . The emergence of perovskite solar cells[J]. Nature Photonics, 2014,8(7):507.
[22] MitziD B . Templating and structural engineering in organic-inorganic perovskites[J]. Journal of the Chemical Society, Dalton Transactions, 2001,1(1):1.
[23] ChengZ, Lin J . Layered organic-inorganic hybrid perovskites:Structure, optical properties, film preparation, patterning and templating engineering[J]. CrystEngComm, 2010,12(10):2646.
[24] WangS, Mitzi D B, Feild C A , et al. Synjournal and characterization of [NH2C(I)=NH2]3MI5 (M = Sn, Pb): Stereochemical activity in divalent tin and lead halides containing single (110) perovskite sheets[J]. Journal of the American Chemical Society, 1995,117:5297.
[25] ZaleskiJ, Pietraszko A . Structure at 200 and 298 K and X-ray investigations of the phase transition at 242 K of[NH2(CH3)2]3-Sb2Cl9(DMACA)[J]. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 1996,52(2):287.
[26] SmithI C, Hoke E T, Solisibarra D , et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie International Edition, 2014,53(42):11232.
[27] ZhangX, Ren X, Liu B , et al. Stable high efficiency two-dimensional perovskite solar cells via cesium doping[J]. Energy & Environmental Science, 2017,10:2095.
[28] KammingaM E, Fang H, Filip M R , et al. Confinement effects in low-dimensional lead iodide perovskite hybrids[J]. Chemistry of Materials, 2016,28(13):4554.
[29] MuljarovE, Tikhodeev S, Gippius N , et al. Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds[J]. Physical Review B, 1995,51(20):14370.
[30] CohenB, Wierzbowska M, Etgar L . High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells[J]. Advanced Functional Materials, 2017,27(5):1604733.
[31] ProtesescuL, Yakunin S, Bodnarchuk M I , et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015,15(6):3692.
[32] CaoD H, Stoumpos C C, Farha O K , et al. 2D Homologous perovskites as light-absorbing materials for solar cell applications[J]. Journal of the American Chemical Society, 2015,137(24):7843.
[33] ChenY, Sun Y, Peng J , et al. Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells[J]. Advanced Energy Materials, 2017,7(18):1700162.
[34] YaoK, Wang X, Xu Y , et al. Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell[J]. Chemistry of Materials, 2016,28(9):3131.
[35] StoumposC C, Soe C M M, Tsai H , et al. High Members of the 2D Ruddlesden-Popper halide perovskites: Synjournal, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16[J]. Chem, 2017,2(3):427.
[36] TsaiH, Nie W, Blancon J C , et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nature, 2016,536(7616):312.
[37] KohT M, Shanmugam V, Schlipf J , et al. Nanostructuring mixed-dimensional perovskites: A route toward tunable, efficient photovoltaics[J]. Advanced Materials, 2016,28(19):3653.
[38] LiaoY, Liu H, Zhou W , et al. Highly-oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance[J]. Journal of the American Chemical Society, 2017,139(19):6693.
[39] BaiY, Xiao S, Hu C , et al. Dimensional engineering of a Graded 3D-2D halide perovskite interface enables ultrahigh Voc enhanced stability in the p-i-n photovoltaics[J]. Advanced Energy Materials, 2017,7(20):1701038.
[40] LiN, Zhu Z, Chueh C C , et al. Mixed Cation FAxPEA1-xPbI3 with enhanced phase and ambient stability toward high-performance perovskite solar cells[J]. Advanced Energy Materials, 2017,7(1):1601307.
[41] XuF, Zhang T, Li G , et al. Mixed cation hybrid lead halide perovskites with enhanced performance and stability[J]. Journal of Materials Chemistry A, 2017,5(23):11450.
[42] MaC, Leng C, Ji Y , et al. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells[J]. Nanoscale, 2016,8(43):18309.
[43] MaoL, Tsai H, Nie W , et al. Role of organic counterion in lead-and tin-based two-dimensional semiconducting iodide perovskites and application in planar solar cells[J]. Chemistry of Materials, 2016,28(21):7781.
[44] WangF, Geng W, Zhou Y , et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells[J]. Advanced Materials, 2016,28(45):9986.
[45] ZhangT, Xie L, Chen L , et al. In situ fabrication of highly luminescent bifunctional amino acid crosslinked 2D/3D NH3C4H9-COO(CH3NH3PbBr3)n perovskite films[J]. Advanced Functional Materials, 2017,27(1):1603568.
[46] LiX, Ibrahim Dar M, Yi C , et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides[J]. Nature Chemistry, 2015,7(9):703.
[47] BiD, Gao P, Scopelliti R , et al. High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3[J]. Advanced Materials, 2016,28(15):2910.
[48] ZhaoT, Chueh C C, Chen Q , et al. Defect passivation of organic-inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices[J]. ACS Energy Letters, 2016,1(4):757.
[49] YanL, Niu H J, Duong G V , et al. Cation ordering within the perovskite block of a six-layer Ruddlesden-Popper oxide from layer-by-layer growth-artificial interfaces in complex unit cells[J]. Chemical Science, 2011,2(2):261.
[50] ShiZ, Guo J, Chen Y , et al. Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: Recent advances and perspectives[J]. Advanced Materials, 2017,29(16):1605005.
[51] CaoD H, Stoumpos C C, Yokoyama T , et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden-Popper (CH3(CH2)3NH3)2(CH3NH3)n-1SnnI3n+1 perovskites[J]. ACS Energy Letters, 2017,2(5):982.
[1] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[2] 曾祥花, 李战峰, 任静琨, 刘伟鹏, 陈今波, 王向坤, 郝玉英. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 《材料导报》期刊社, 2018, 32(9): 1423-1426.
[3] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[4] 何苗, 陈建林, 周厅, 彭卓寅, 任延杰, 陈荐. 陷光结构应用于太阳能电池的研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 696-707.
[5] 甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
[6] 彭家奕, 夏雪峰, 江奕华, 邹敏华, 王晓峰, 李璠. 无机电荷传输层在有机-无机杂化钙钛矿太阳能电池中的应用及研究进展[J]. 材料导报, 2018, 32(23): 4027-4040.
[7] 李博, 徐晓婷, 郑雪晴. 离子液体在有机光电转换器件中的应用研究进展[J]. 材料导报, 2018, 32(23): 4116-4124.
[8] 杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
[9] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[10] 谭海军, 何敬文, 裴海睿, 李和平, 张淑芬, 张淑华. 吩噻嗪和吩噁嗪给电子体在染料敏化太阳能电池中的性能对比分析[J]. 材料导报, 2018, 32(15): 2538-2541.
[11] 邹金龙, 罗玉峰, 肖宗湖, 胡云, 饶森林, 刘绍欢. 空穴传输材料在高效钙钛矿太阳能电池中的发展演变[J]. 材料导报, 2018, 32(15): 2542-2554.
[12] 周丹, 秦元成, 徐海涛, 李明俊. 有机太阳能电池阴极界面层概述[J]. 材料导报, 2018, 32(13): 2143-2150.
[13] 陈健, 缪卫峰, 王吉林, 郑国源, 龙飞. 浅析有机金属卤化物钙钛矿太阳能电池稳定性的研究[J]. 材料导报, 2018, 32(13): 2151-2160.
[14] 刘萍, 曾葆青, 王亚雄, 汪江浩. 纳米线透明导电薄膜的制备及在光电器件中的应用*[J]. 《材料导报》期刊社, 2017, 31(7): 6-18.
[15] 李昱煜,沈沪江,刘岩,王炜,袁慧慧,谢华清. PEDOT基对电极染料敏化太阳能电池研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 19-25.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed