Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 689-695    https://doi.org/10.11896/j.issn.1005-023X.2018.05.001
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
高效本征薄层异质结(HIT)太阳电池技术研究进展
郝立成, 张明, 陈文超, 冯晓东
南京工业大学材料科学与工程学院,南京210009
A Technological Review of the Highly Efficient Heterojunction with Intrinsic Thin-layer (HIT) Solar Cells
HAO Licheng, ZHANG Ming, CHEN Wenchao, FENG Xiaodong
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009
下载:  全 文 ( PDF ) ( 1437KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高效本征薄层异质结(HIT)是由本征钝化层沉积在a-Si/c-Si界面处组成,这种硅异质结(SHJ)结构由于钝化性能好,实际效率值往往比同质结电池更高。本文首先介绍了HIT高效电池发展现状、电池基本结构的特点,然后从制备工艺、钝化原理、能带带阶等几个方面对衬底层、非晶硅层(本征/掺杂)、TCO薄膜以及金属格栅电极展开讨论,并对未来高效HIT电池的工业化发展趋势做了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝立成
张明
陈文超
冯晓东
关键词:  能带带阶  钝化  载流子迁移率  高效本征薄层异质结(HIT)  太阳电池    
Abstract: Heterojunction with intrinsic thin-layer (HIT) consist of thin amorphous silicon layers deposited on crystalline silicon wafers, which forms a silicon heterojunction (SHJ) structure with the major advantages of full exploitation of the excellent passivation properties of a-Si∶H films, and consequently, the energy conversion efficiencies higher than homogenous cells. The paper provides an introduction on the development and the structure of the HIT solar cells, and a discussion upon the wafer layers, the a-Si (undoped/doped) layers, the TCO (transparent conducting oxides) films and the metal grid electrodes from the perspectives of fabrication processes, the principle of passivation, and the band gap. Finally a prospect on the future trends are also proposed.
Key words:  band gap    passivation    carrier mobility    heterojunction with intrinsic thin-layer(HIT)    solar cell
               出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TM914  
基金资助: 江苏高校优势学科建设工程
通讯作者:  冯晓东:通信作者,男,1972年生,教授,主要从事光伏电池与有机发光器件(OLED)的研究 E-mail:xiaodong_feng@njtech.edu.cn   
作者简介:  郝立成:男,1993年生,硕士研究生,主要从事高效HIT异质结电池研究 E-mail:njut_cheng@163.com 冯晓东:
引用本文:    
郝立成, 张明, 陈文超, 冯晓东. 高效本征薄层异质结(HIT)太阳电池技术研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 689-695.
HAO Licheng, ZHANG Ming, CHEN Wenchao, FENG Xiaodong. A Technological Review of the Highly Efficient Heterojunction with Intrinsic Thin-layer (HIT) Solar Cells. Materials Reports, 2018, 32(5): 689-695.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.001  或          http://www.mater-rep.com/CN/Y2018/V32/I5/689
20180807111344  
1 Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J].Journal of Applied Physics,1954,25(5):676.
2 Grigorovici R, Croitoru N, Marina M, et al. Heterojunctions between amorphous Si and Si single crystals[J].Revue Roumaine de Physique,1968,13(4):317.
3 Tanaka M, Taguchi M, Matsuyama T, et al. Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer)[J].Japanese Journal of Applied Physics,1992,31(11R):3518.
4 Wakisaka K, Taguchi M, Sawada T, et al. More than 16% solar cells with a new‘HIT’(doped a-Si/nondoped a-Si/crystalline Si) structure[C]∥Conference Record of the Twenty Second IEEE:Photovoltaic Specialists Conference.Las Vegas,NV,USA,1991:887.
5 Tsunomura Y, Yoshimine Y, Taguchi M, et al. Twenty-two percent efficiency HIT solar cell[J].Solar Energy Materials and Solar Cells,2009,93(6):670.
6 Mishima T, Taguchi M, Sakata H, et al. Development status of high-efficiency HIT solar cells[J].Solar Energy Materials and Solar Cells,2011,95(1):18.
7 Taguchi M, Yano A, Tohoda S, et al. 24.7% record efficiency HIT solar cell on thin silicon wafer[J].IEEE Journal of Photovoltaics,2014,4(1):96.
8 Adachi D, Hernández J L, Yamamoto K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency[J].Applied Physics Letters,2015,107(23):233506.
9 Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J].Nature Energy,2017,2:17032.
10 Descoeudres A, Holman Z C, Barraud L, et al. >21% efficient silicon heterojunction solar cells on n- and p-type wafers compared[J].IEEE Journal of Photovoltaics,2013,3(1):83.
11 Wang T H, Page M R, Iwaniczko E, et al. Toward better understanding and improved performance of silicon heterojunction solar cells[C]∥Proc.14th Workshop Crystalline Silicon Solar Cells Mo-dules.Colorado,2004.
12 Wang T H, Iwaniczko E, Page M R, et al. High-Performance amorphous silicon emitter for crystalline silicon solar cells[C]∥MRS Proceedings.Cambridge Univ Press,2005.
13 Zhang Y, Cong R, Zhao W, et al. Improved hetero-interface passivation by microcrystalline silicon oxide emitter in silicon heterojunction solar cells[J].Science Bulletin,2016,61(10):787.
14 Zhong S, Hua X, Shen W. Simulation of high-efficiency crystalline silicon solar cells with homo-hetero junctions[J].IEEE Transactions on Electron Devices,2013,60(7):2104.
15 Harder N. Heterojunction solar cell with absorber having an integrated doping profile:EP,2291862[P].2009-06-30.
16 Ghannam M, Abdulraheem Y, Shehada G. Interpretation of the degradation of silicon HIT solar cells due to inadequate front contact TCO work function[J].Solar Energy Materials and Solar Cells,2016,145:423.
17 Ruske F. Deposition and properties of TCOs[M]∥Physics and technology of amorphous-crystalline heterostructure silicon solar cells.Springer,2012:301.
18 Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells[J].IEEE Journal of Photovoltaics,2013,3(4):1184.
19 Kerr M J, Cuevas A, Campbell P. Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination[J].Progress in Photovoltaics:Research and Applications,2003,11(2):97.
20 Macdonald D, Geerligs L J. Recombination activity of interstitialiron and other transition metal point defects in p- and n-type crystalline silicon[J].Applied Physics Letters,2004,85(18):4061.
21 Schmidt J, Cuevas A. Electronic properties of light-induced recombination centers in boron-doped Czochralski silicon[J].Journal of Applied Physics,1999,86(6):3175.
22 Bai Y, Phillips J E, Barnett A M. The roles of electric fields and illumination levels in passivating the surface of silicon solar cells[J].IEEE Transactions on Electron Devices,1998,45(8):1784.
23 Lagowski J, Edelman P, Kontkiewicz A M, et al. Iron detection in the part per quadrillion range in silicon using surface photovoltage and photodissociation of iron-boron pairs[J].Applied Physics Letters,1993,63(22):3043.
24 Angermann H, Rappich J. Wet-chemical conditioning of silicon substrates for a-Si∶H/c-Si Heterojunctions[M]∥Physics and technology of amorphous-crystalline heterostructure silicon solar cells.Springer,2012:45.
25 Kegel J, Angermann H, Stürzebecher U, et al. Over 20% conversion efficiency on silicon heterojunction solar cells by IPA-free substrate texturization[J].Applied Surface Science,2014,301:56.
26 Danel A, Jay F, Harrison S, et al. Surface passivation of c-Si textured wafer for a-Si∶H/c-Si heterojunction solar cells: Correlation between lifetime tests and cell performance of a pilot line[C]∥26th European PV Solar Energy Conference.Hamburg,Germany,2011.
27 Descoeudres A, Barraud L, De Wolf S, et al. Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment[J].Applied Physics Letters,2011,99(12):123506.
28 Schulze T F, Beushausen H N, Leendertz C, et al. Interplay of amorphous silicon disorder and hydrogen content with interface defects in amorphous/crystalline silicon heterojunctions[J].Applied Physics Letters,2010,96(25):252102.
29 Strahm B, Andrault Y, Betzner D, et al. Uniformity and quality of monocrystalline silicon passivation by thin intrinsic amorphous silicon in a new generation plasma-enhanced chemical vapor deposition reactor[C]∥MRS Proceedings.Cambridge Univ Press,2010.
30 Descoeudres A, Barraud L, Bartlome R, et al. The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality[J].Applied Physics Letters,2010,97(18):183505.
31 Olibet S, Vallat Sauvain E, Fesquet L, et al. Properties of interfaces in amorphous/crystalline silicon heterojunctions[J].Physica Status Solidi(a),2010,207(3):651.
32 Schüttauf J A, van der Werf K H, Kielen I M, et al. Excellent crystalline silicon surface passivation by amorphous silicon irrespective of the technique used for chemical vapor deposition[J].Applied Physics Letters,2011,98(15):153514.
33 Wang Q, Page M R, Iwaniczko E, et al. Efficient heterojunction solar cells on p-type crystal silicon wafers[J].Applied Physics Letters,2010,96(1):13507.
34 Illiberi A, Sharma K, Creatore M, et al. Role of a-Si∶H bulk in surface passivation of c-Si wafers[J].Physica Status Solidi (RRL)-Rapid Research Letters,2010,4(7):172.
35 Das U K, Burrows M Z, Lu M, et al. Surface passivation and heterojunction cells on Si (100) and (111) wafers using dc and rf plasma deposited Si∶H thin films[J].Applied Physics Letters,2008,92(6):63504.
36 Agarwal M, Dusane R O. Passivation study of multi-crystalline silicon wafer with ia-Si∶H layer deposited by HWCVD[J].Thin Solid Films,2015,575:64.
37 Soni S K, Phatak A, Dusane R O. High deposition rate device quality a-Si∶H films at low substrate temperature by HWCVD technique[J].Solar Energy Materials and Solar Cells,2010,94(9):1512.
38 Wu B R, Wu D S, Wan M S, et al. Fabrication of selective-emitter silicon heterojunction solar cells using hot-wire chemical vapor deposition and laser doping[J].Thin Solid Films,2009,517(17):4749.
39 Maydell K V, Conrad E, Schmidt M. Efficient silicon heterojunction solar cells based on p- and n-type substrates processed at temperatures<220 ℃[J].Progress in Photovoltaics:Research and Applications,2006,14(4):289.
40 Ballif C, De Wolf S, Descoeudres A, et al. Amorphous silicon/crystalline silicon heterojunction solar cells[J].Semiconductors & Semimetals,2014,90(12):73.
41 De Wolf S. Intrinsic and doped a-Si∶H/c-Si interface passivation[M]∥Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells.Springer,2012:223.
42 Gielis J, van Den Oever P J, Hoex B, et al. Real-time study of a-Si∶H/c-Si heterointerface formation and epitaxial Si growth by spectroscopic ellipsometry, infrared spectroscopy, and second-harmonic generation[J].Physical Review B,2008,77(20):205329.
43 van den Oever P J, van de Sanden M, Kessels W. Real time spectroscopic ellipsometry on ultrathin (<50 ) hydrogenated amorphous silicon films on Si (100) and GaAs (100)[J].Journal of Applied Physics,2007,101(12):123529.
44 Cuevas A, Sinton R A. Prediction of the open-circuit voltage of solar cells from the steady-state photoconductance[J].Progress in Photovoltaics:Research and Applications,1997,5(2):79.
45 De Nicolás S M, Muoz D, Ozanne A S, et al. Optimisation of doped amorphous silicon layers applied to heterojunction solar cells[J].Energy Procedia,2011,8:226.
46 De Wolf S, Kondo M. Nature of doped a-Si∶H/c-Si interface recombination[J].Journal of Applied Physics,2009,105(10):103707.
47 刘湘娜,何宇亮,沈宗雍,等.非晶与多晶硅薄膜电导特性的研究[J].电子学报,1983(2):21.
48 Tomasi A, Sahli F, Seif J P, et al. Transparent electrodes in silicon heterojunction solar cells: Influence on contact passivation[J].IEEE Journal of Photovoltaics,2016,6(1):17.
49 Yan L T, Schropp R. Changes in the structural and electrical pro-perties of vacuum post-annealed tungsten-and titanium-doped indium oxide films deposited by radio frequency magnetron sputtering[J].Thin Solid Films,2012,520(6):2096.
50 Yamada N, Yamada M, Toyama H, et al. High-throughput optimization of near-infrared-transparent Mo-doped In2O3 thin films with high conductivity by combined use of atmospheric-pressure mist chemical-vapor deposition and sputtering[J].Thin Solid Films,2017,626:46.
51 Beh H, Hiller D, Laube J, et al. Deposition temperature dependence and long-term stability of the conductivity of undoped ZnO grown by atomic layer deposition[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2017,35(1):1B.
52 Moulin E, Bittkau K, Ghosh M, et al. Comparison of LPCVD and sputter-etched ZnO layers applied as front electrodes in tandem thin-film silicon solar cells[J].Solar Energy Materials and Solar Cells,2016,145:185.
53 Lee K S, Oh G, Kim E K. Optimization of the p+-ZnTe layer for back contacts of ZnTe thin-film solar cells[J].Journal of the Korean Physical Society,2016,69(3):416.
54 Lai K, Liu C, Lu C, et al. Characterization of ZnO: Ga transparent contact electrodes for microcrystalline silicon thin film solar cells[J].Solar Energy Materials and Solar Cells,2010,94(3):397.
55 Koida T, Fujiwara H, Kondo M. High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si∶H/c-Si heterojunction solar cells[J].Solar Energy Materials and Solar Cells,2009,93(6):851.
56 Tong C, Yun J, Chen Y, et al. Thermally diffused Al∶ZnO thin films for broadband transparent conductor[J].ACS Applied Mate-rials & Interfaces,2016,8(6):3985.
57 Kim J, Yer I. Characterization of ZnO nanowires grown on Ga-doped ZnO transparent conductive thin films: Effect of deposition temperature of Ga-doped ZnO thin films[J].Ceramics International,2016,42(2):3304.
58 Favier A, Munoz D, De Nicolás S M, et al. Boron-doped zinc oxide layers grown by metal-organic CVD for silicon heterojunction solar cells applications[J].Solar Energy Materials and Solar Cells,2011,95(4):1057.
59 Ulyashin A, Sytchkova A. Hydrogen related phenomena at the ITO/a-Si∶H/Si heterojunction solar cell interfaces[J].Physica Status Solidi (a),2013,210(4):711.
60 Christensen J S, Ulyashin A G, Maknys K, et al. Analysis of thin layers and interfaces in ITO/a-Si∶H/c-Si heterojunction solar cell structures by secondary ion mass spectrometry[J].Thin Solid Films,2006,511:93.
61 Hernández J L, Adachi D, Schroos D, et al. High efficiency copper electroplated heterojunction solar cells and modules—The path towards 25% cell efficiency[C]∥Proceedings of the 28th European Photovoltaic Solar Energy Conference.Paris,2013.
62 Ballif C, Barraud L, Descoeudres A, et al. a-Si∶H/c-Si heterojunctions: A future mainstream technology for high-efficiency crystalline silicon solar cells[J].Photovoltaic Specialists Conference,2012,42(11):001705.
63 Sebastiani M, Di Gaspare L, Capellini G, et al. Low-energy yield spectroscopy as a novel technique for determining band offsets: Application to the c-Si (100)/a-Si∶H heterostructure[J].Physical Review Letters,1995,75(18):3352.
64 Wang T H, Page M R, Iwaniczko E, et al. Toward better understanding and improved performance of silicon heterojunction solar cells[C]∥Proc.14th Workshop Crystalline Silicon Solar Cells Mo-dules.Colorado,2004.
65 Korte L. Electronic properties of ultrathin a-Si∶H layers and the a-Si∶H/c-si interface[M]∥Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells.Springer,2012:161.
66 Van de Walle C G, Yang L H. Band discontinuities at heterojunctions between crystalline and amorphous silicon[J].Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena,1995,13(4):1635.
67 Korte L, Schmidt M. Doping type and thickness dependence of band offsets at the amorphous/crystalline silicon heterojunction[J].Journal of Applied Physics,2011,109(6):63714.
68 Froitzheim A. Hetero-Solarzellen aus amorphem und kristallinem Silizium[D].Germany:Universittsbibliothek Marburg, 2003.
69 Datta A, Rahmouni M, Nath M, et al. Insights gained from computer modeling of heterojunction with instrinsic thin layer “HIT” solar cells[J].Solar Energy Materials and Solar Cells,2010,94(9):1457.
70 Kanevce A, Metzger W K. The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells[J].Journal of Applied Physics,2009,105(9):94507.
71 Kim Y, Kim S, Kim Y, et al. A study on the selective hole carrier extraction layer for application of amorphous/crystalline silicon heterojunction solar cell[J].Journal of the Korean Institute of Electrical and Electronic Material Engineers,2017,30(3):192.
72 Coletti G, Wu Y, Janssen G, et al. 20.3% MWT Silicon heterojunction solar cell—A novel heterojunction integrated concept embedding low ag consumption and high module efficiency[J].IEEE Journal of Photovoltaics,2015,5(1):55.
73 Geissbühler J, Werner J, Martin De Nicolas S, et al. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector[J].Applied Physics Letters,2015,107(8):81601.
74 Deng Q, Li Y, Shen Y, et al. Numerical simulation on n-MoS2/p-Si heterojunction solar cells[J].Modern Physics Letters B,2017,31(7):1750079.
75 Pradhan S K, Xiao B, Pradhan A K. Enhanced photo-response in p-Si/MoS2 heterojunction-based solar cells[J].Solar Energy Materials and Solar Cells,2016,144:117.
[1] 卢刚, 杨振英, 何凤琴, 郑璐, 钱俊, 封先锋, 高嘉庆. N型背接触异质结太阳电池背面结构参数优化[J]. 材料导报, 2019, 33(z1): 45-49.
[2] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[3] 陈俊帆, 赵生盛, 高天, 徐玉增, 张力, 丁毅, 张晓丹, 赵颖, 侯国付. 高效单晶硅太阳电池的最新进展及发展趋势[J]. 材料导报, 2019, 33(1): 110-116.
[4] 刘仪柯, 唐雅琴, 蒋良兴, 刘芳洋, 秦 勤, 张 坤. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 《材料导报》期刊社, 2018, 32(9): 1412-1416.
[5] 李恒月, 龚辰迪, 黄可卿, 阳军亮. 基于印刷技术制备钙钛矿太阳电池[J]. 《材料导报》期刊社, 2018, 32(9): 1385-1400.
[6] 贺凯, 陈诺夫, 魏立帅, 王从杰, 陈吉堃. 退火对铝诱导结晶锗薄膜的影响及其机理[J]. 材料导报, 2018, 32(15): 2571-2575.
[7] 金鹤, 周灵平, 朱家俊, 符立才, 杨武霖, 李德意. 空间太阳电池玻璃盖板表面超薄ITO防静电层的设计及制备工艺*[J]. 《材料导报》期刊社, 2017, 31(17): 158-162.
[8] 刘源, 唐鹏, 张静全, 武莉莉, 李卫, 王文武, 冯良桓. N离子注入改性SnO2缓冲层及其CdTe太阳电池应用*[J]. 《材料导报》期刊社, 2017, 31(17): 152-157.
[9] 戎小莹, 金慧娇, 张天, 郭丹, 赵昆越, 田汉民. 钙钛矿太阳电池的理论性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 33-40.
[10] 刘雨生, 刘雯, 张淑媛, 杨富华, 王晓东. 陷光结构在GaAs薄膜太阳电池中的应用*[J]. 《材料导报》期刊社, 2017, 31(11): 11-19.
[11] 郑 涛, 黄 茜, 侯国付, 丁 毅, 张晓丹, 赵 颖. 基于Ⅳ-Ⅵ族化合物的胶体量子点太阳电池研究进展*[J]. CLDB, 2017, 31(1): 1-9.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed