Please wait a minute...
CLDB  2017, Vol. 31 Issue (1): 1-9    https://doi.org/10.11896/j.issn.1005-023X.2017.01.001
  材料综述 |
基于Ⅳ-Ⅵ族化合物的胶体量子点太阳电池研究进展*
郑 涛,黄 茜,侯国付,丁 毅,张晓丹,赵 颖
南开大学光电子薄膜器件与技术研究所,天津 300071
Research and Development of Colloidal Quantum Dot Solar Cells Based on Ⅳ-Ⅵ Compounds
ZHENG Tao, HUANG Qian, HOU Guofu, DING Yi, ZHANG Xiaodan, ZHAO Ying
Institute of Photoelectronic Thin Film Devices and Technology of Nankai University,Tianjin 300071
下载:  全 文 ( PDF ) ( 1915KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于Ⅳ-Ⅵ族化合物的胶体量子点具有易于合成、带隙可调等优点,被认为是一种非常有前途的窄带隙光伏材料。近年来,利用Ⅳ-Ⅵ族化合物制作的胶体量子点太阳电池最高转换效率已经突破10%。介绍了胶体量子点的合成方法、基本结构及其光电特性;着重分析了国内外关于肖特基和异质结胶体量子点太阳电池的研究现状,指出了目前该领域研究中存在的问题和发展趋势,并分析了未来需要重点解决的关键问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑 涛
黄 茜
侯国付
丁 毅
张晓丹
赵 颖
关键词:  胶体量子点  热注入法  PbS量子点太阳电池  配体    
Abstract: Colloidal quantum dots prepared by Ⅳ-Ⅵ compounds were considered to be very promising narrow band gap photovoltaic materials thanks to their simple synthesis methods and adjustable band gap. In recent years, the highest conversion efficiency of colloidal quantum dot solar cells prepared by Ⅳ-Ⅵ compounds has exceeded 10%. This paper introduces synthesis methods, basic structure and the optical and electrical properties of Ⅳ-Ⅵ compounds, analyzes the current research status of Schottky and heterojunction colloidal quantum dot solar cells, points out the existing problems and the development trend, and proposes key problem to be solved in the future.
Key words:  colloidal quantum dot    hot injection method    PbS quantum dot solar cells    ligands
               出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TM914.4  
基金资助: 高等学校学科创新引智计划(B16027);国家自然科学基金(61176060;61404074;61504069);天津市自然科学基金项目(14JCQNJC02100)
作者简介:  郑涛:男, 1991年生,硕士研究生,主要从事PbS量子点太阳电池研究 E-mail: 1543839034@qq.com 侯国付:通讯作者,男,1975年生,研究员,主要研究领域为薄膜光伏材料和器件 E-mail:gfhou@nankai.edu.cn
引用本文:    
郑 涛, 黄 茜, 侯国付, 丁 毅, 张晓丹, 赵 颖. 基于Ⅳ-Ⅵ族化合物的胶体量子点太阳电池研究进展*[J]. CLDB, 2017, 31(1): 1-9.
ZHENG Tao, HUANG Qian, HOU Guofu, DING Yi, ZHANG Xiaodan, ZHAO Ying. Research and Development of Colloidal Quantum Dot Solar Cells Based on Ⅳ-Ⅵ Compounds. Materials Reports, 2017, 31(1): 1-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.001  或          http://www.mater-rep.com/CN/Y2017/V31/I1/1
1 Shockley W, Queisser H. Detailed balance limit of efficiency of p-n junction solar cells[J]. Appl Phys,1961,32(3):510.
2 Green M A.Third generation photovoltaics[R]. Berlin:Springer-Verlag,2003.
3 Johnston K W. Solution-processed schottky-quantum dot photovoltaics for efficient infrared power conversion [D].Tornto: University of Toronto,2008.
4 Park J,Joo J,Kwon S G,et al.Synthesis of monodisperse spherical nanocrystals[J]. Angew Chem Int Ed,2007,46:4630.
5 Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chem Rev,2005,105:1025.
6 Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=S,Se,Te) semiconductor nanocrystallites[J].J Am Chem Soc,1993,115(19):8706.
7 Murray C B, Sun S, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices[J]. IBM J Res Develop,2001,45(1):47.
8 Yu W W, Falkner J C, Shih B S, et al. Preparation and characte-rization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent[J]. Chem Mater,2004,16:3318.
9 Hines M A, Scholes G D. Colloidal PbS Nanocrystals with size-tu-nable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution[J]. Adv Mater,2003,15(21):1844.
10 Moreels I, Justo Y, De Geyter B,et al. Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study[J]. ACS Nano,2011,5:2004.
11 Kovalenko M V,Scheele M,Talapin D V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands[J].Science,2009,324:1417.
12 Ethan J D, MacNeil D D, Cyr P W,et al. Efficient solution-processed infrared photovoltaic cells:Planarized all-inorganic bulk he-terojunction devices via inter-quantum-dot bridging during growth from solution[J]. Appl Phys Lett,2007,90:183113.
13 Diedenhofen S L, Kufer D, Lasanta T,et al. Integrated colloidal quantum dot photodetectors with color-tunable plasmonic nanofocu-sing lenses[J]. Light Sci Appl,2015,4:e234.
14 Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells[J]. Science,2002,295:2425.
15 Li Q,Sun B, Kinloch I A, et al.Enhanced self-assembly of pyridine-capped CdSe nanocrystals on individual single-walled carbon nanotubes[J]. Chem Mater,2006,18:164.
16 Lokteva I, Radychev N, Witt F, et al. Surface treatment of CdSe nanoparticles for application in hybrid solar vells: The effect of multiple ligand exchange with pyridine[J]. J Phys Chem C,2010,114:12784.
17 Tang J,Kemp K W,Hoogland S,et al.Colloidal-quantum-dot photovoltaics using atomic-ligand passivation[J]. Nat Mater,2011,10:765.
18 Anderson N C, Owen J S. Soluble, chloride-terminated CdSe nanocrystals: Ligand exchange monitored by 1H and 31P NMR spectroscopy[J]. Chem Mater,2012,25:69.
19 Ning Z, Ren Y, Hoogland S, et al. All-Inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation[J]. Adv Mater,2012,24:6295.
20 Zhang J, Gao J, Miller E M, et al. Diffusion-controlled synthesis of PbS and PbSe quantum dots within situ halide passivation for quantum dot solar cells[J]. ACS Nano,2013,8:614.
21 Dirin D N, Dreyfuss S, Bodnarchuk M I,et al. Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals[J]. J Am Chem Soc,2014,136:6550.
22 Zhang H, Jang J, Liu W, et al. Colloidal nanocrystals with inorga-nic halide, pseudohalide, and halometallate ligands[J]. ACS Nano,2014,8:7359.
23 Smith D K,Luther J M,Semonin O E,et al.Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity[J]. ACS Nano,2010,5:183.
24 Van Vechten J A, Bergstresser T K. Electronic structures of semiconductor alloys[J]. Phys Rev B,1970,1:3351.
25 Regulacio M D, Han M Y. Composition-tunable alloyed semiconductor nanocrystals[J]. Acc Chem Res,2010,43:621.
26 Mukherjee S, Hazarika A, Santra P K,et al.Determination of internal structures of heterogeneous nanocrystals using variable-energy photoemission spectroscopy[J]. J Phys Chem C,2014,118:15534.
27 Buonsanti R,Milliron D J. Chemistry of doped colloidal nanocrystals[J]. Chem Mater,2013,25:1305.
28 Shu T, Zhou Z,Wang H, et al.Efficient quantum dot-sensitized solar cell with tunable energy band CdSexS(1-x) quantum dots[J]. J Mater Chem,2012,22:10525.
29 Pan Z,Zhao K, Wang J,et al. Near infrared absorption of CdSexTe1-x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability[J]. ACS Nano,2013,7,5215.
30 Stavrinadis A,Rath A K, de Arquer F P G,et al. Heterovalent ca-tion substitutional doping for quantum dot homojunction solar cells[J]. Nat Commun,2013,4:2981.
31 Liu H, Zhitomirsky D, Hoogland S, et al. Systematic optimization of quantum junction colloidal quantum dot solar cells[J]. Appl Phys Lett,2012,101:151112.
32 Zhai G,Church C,Breeze A J,et al. TiO2/PbSxSe1-x quantum dot heterojunction solar cells with external quantum efficiency above 100%[J].Nanotechnology,2012,23(40):405401.
33 Deutsch Z,Avidan A, Pinkas I, et al. Energetics and dynamics of exciton-exciton interactions in compound colloidal semiconductor quantum dots[J]. Phys Chem Chem Phys,2011,13:3210.
34 Reiss P,Protieère M,Li L. Core/shell semiconductor nanocrystals[J]. Small,2009,5:154.
35 Justo Y, Geiregat P,Hoecke K V, et al. Optical properties of PbS/CdS core/shell quantum dots[J]. Phys Chem C,2013,117:20171.
36 Zhao H, Fan Z, Liang H, et al. Controlling photoinduced electron transfer from PbS/CdS core/shell quantum dots to metal oxide nanostructured thin films[J]. Nanoscale,2014,6:7004.
37 Neo D C J,Cheng C, Stranks S D, et al. Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells[J]. Chem Mater,2014,26:4004.
38 Neo M S,Venkatram N, Li G S, et al. Synthesis of PbS/CdS core-shell QDs and their nonlinear optical properties[J]. J Phys Chem C,2010,114:18037.
39 Santra P K, Nair P V, George Thomas, et al. CuInS2-sensitized quantum dot solar cell: Electrophoretic deposition, excited-state dynamics, and photovoltaic performance[J]. Phys Chem Lett,2013,4:722.
40 Li T L, Lee Y L, Teng H. High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure[J]. Energy Environ Sci,2012,5:5315.
41 Luo J, Wei H, Huang Q, et al. Highly efficient core-shell CuInS2-Mn doped CdS quantum dot sensitized solar cells[J]. Chem Commun,2013,49:3881.
42 McDaniel H, Fuke N, Pietryga J M, et al. Engineered CuInSexS2-x quantum dots for sensitized solar cells[J].Phys Chem Lett,2013,4:355.
43 McDaniel H,Fuke N, Makarov N S, et al. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells[J]. Nat Commun,2013,4:2887.
44 Pan Z, Mora-Seroó I, Shen Q, et al. High-Efficiency “green” quantum dot solar cells[J].J Am Chem Soc,2014,136:9203.
45 Aldakov D, Lefrancois A, Reiss P. Ternary and quaternary metal chalcogenide nanocrystals: Synthesis, properties and applications[J]. Mater Chem C,2013,1:3756.
46 Ivanov S A, Piryatinski A, Nanda J,et al.Type-Ⅱ core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties[J]. J Am Chem Soc,2007,129:11708.
47 Ip A H, Thon S M, Hoogland S, et al. Hybrid passivated colloidal quantum dot solids[J]. Nat Nanotechnol,2012,7:577.
48 Zhang J, Gao J, Church C P, et al. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere[J]. Nano Lett,2014,14:6010.
49 Ning Z, Voznyy O, Pan J, et al. Air-stable n-type colloidal quantum dot solids[J]. Nat Mater,2014,13:822.
50 Carey G H, Levina L, Comin R, et al. Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation[J]. Adv Mater,2015,27:3325.
51 Wang R, Shang Y, Kanjanaboos P, et al. Colloidal quantum dot ligand engineering for high performance solar cells[J].Energy Environ,2016,9:1130.
52 Johnston K W, Pattantyusabraham A G,Clifford J P, et al. Schottky-quantum dot photovoltaics for efficient infrared power conversion [J]. Appl Phys Lett,2008,92(15):151115.
53 Pattantyus-Abraham A G, Kramer I J, Barkhouse A R, et al. Depleted-heterojunction colloidal quantum dot solar cells [J]. ACS Nano,2010,4(6):3374.
54 Lee Y L, Huang B M, Chien H T. Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications [J]. Chem Mater,2008,20(22):6903.
55 Luther J M, Law M, Beard M C, et al. Schottky solar cells based on colloidal nanocrystal films[J]. Nano Lett,2008,8(10):3488.
56 Jonhston K W, Pattantyus-Abraham A G, Clifford J P,et al.Schottky-quantum dot photovoltaics for efficient infrared power conversion[J]. Appl Phys Lett,2008,92:151115.
57 Koleilat G I, Levina L, Shukla H, et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots[J]. ACS Nano,2008,2:833.
58 Ma W, Luther J M,Zheng H, et al.Photovoltaic devices employing ternary PbSxSe1-x nanocrystals[J]. Nano Lett,2009,9:1699.
59 Ratan D, Jiang T, Barkhouse D A, et al. Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nano-particles[J]. J Am Chem Soc,2010,132:5952.
60 Piliego C, Protesescu L, Bisri S Z, et al. 5.2% efficient PbS nanocrystal Schottky solar cells[J].Energy Environ Sci,2013,6(10):3054.
61 Liu Y,Gibbs M, Puthussery J, et al.Dependence of carrier mobility on nanocrystal size andligand length in PbSe nanocrystal solids[J]. Nano Lett,2010,10:1960.
62 Ju T, Graham R L, Zhai G M, et al. High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature[J]. Appl Phys Lett,2010,97(4):043106.
63 Tang J, Kemp K W, Hoogland S, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation[J]. Nat Mater, 2011,10(10):765.
64 Chia-Hao M Chuang, Patrick R Brown,et al.Improved performance and stability in quantum dot solar cells through band alignment engineering[J].Nat Mater,2014,13:768.
65 Octavi E Semonin, Joseph M Luther,et al.Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell[J].Science,2011,334:1530.
66 Zhang Jianbing, Gao Jianbo,Carena P Church,et al. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere[J].Nano Lett,2014,14:6010.
67 Yuan M,Voznyy O,Zhitomirsky D, et al. Synergistic doping of fullerene electron transport layer and colloidal quantum dot solids enhances solar cell performance[J]. Adv Mater,2015,27:917.
68 Kim G H,Garcia de Arquer F P,Yoon Y J,et al. High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monola-yers[J].Nano Lett,2015,11,15(11):7691.
69 Wang X, Koleilat G I, Tang J, et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer[J]. Nat Photon,2011,5:480.
70 Nozik A J, Beard M C, Luther J M, et al.Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton ge-neration to third-generation photovoltaic solar cells[J]. Chem Rev,2010,110:6873.
71 Ross R T, Nozik A J. Efficiency of hot-carrier solar energy conver-ters[J]. Appl Phys,1982,53:3813.
72 Pandey A, Guyot-Sionnest P. Slow electron cooling in colloidal quantum dots[J]. Science,2008,322:929.
73 Tisdale W A, Williams K J, Timp B A,et al. Hot-electron transfer from semiconductor nanocrystals[J]. Science,2010,328:1543.
74 Beard M C, Luther J M, Semonin O E, et al. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors[J]. Acc Chem Res,2012,46:1252.
75 Schaller R D, Klimov V I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion[J]. Phys Rev Lett,2004,92:186601.
[1] 张睿, 顾晓龙, 庞欢. 新型异金属三羰基铼配合物的合成及光学性质研究[J]. 《材料导报》期刊社, 2018, 32(8): 1252-1257.
[2] 吴益华,黄婧,吴迪,陈中珍,李丹,朱志刚,施惟恒,. 反应时间对CH3NH3PbBr3钙钛矿纳米晶形貌及荧光性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 1-4.
[3] 诸婷婷, 谢明明, 龚狄荣. 含半不稳定边臂配体的钛配合物催化丙交酯聚合*[J]. 《材料导报》期刊社, 2017, 31(14): 40-45.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed