Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22060274-13    https://doi.org/10.11896/cldb.22060274
  无机非金属及其复合材料 |
活化亚硫酸(氢)盐降解有机污染物的研究进展
齐亚兵1,*, 贾宏磊2
1 西安建筑科技大学化学与化工学院,西安 710055
2 浙江先锋科技股份有限公司质保部,浙江 台州 317000
Research Advances of Degradation of Organic Pollutants by Activated Sulfite or Hydrosulfite
QI Yabing1,*, JIA Honglei2
1 School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Quality Assurance Department, Zhejiang Xianfeng Technologies Co., Ltd., Taizhou 317000, Zhejiang, China
下载:  全 文 ( PDF ) ( 2529KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与过硫酸盐相比,亚硫酸(氢)盐价格低廉,来源广泛,毒性更低。活化亚硫酸(氢)盐过程不但可产生强氧化性的SO4·-和SO5·-,还可产生兼具氧化性和还原性的SO3·-,因此,活化亚硫酸(氢)盐在降解有机污染物的同时可实现自身的氧化,不会造成二次污染,具有广阔的发展前景。活化亚硫酸(氢)盐的方式主要包括光活化、过渡金属活化、炭质材料活化和电化学活化等。本文简述了活化亚硫酸(氢)盐的机制,综述了活化亚硫酸(氢)盐降解有机污染物的研究进展,解析了活化亚硫酸(氢)盐降解有机污染物的影响因素,分析了活化亚硫酸(氢)盐降解有机污染物存在的问题,展望了活化亚硫酸(氢)盐降解有机污染物的发展趋势,以期为相关学者的后续研究工作提供一定的参考。目前活化亚硫酸(氢)盐降解有机污染物技术还处于实验室研究阶段,未见相关工业应用的报道。假以时日,如若技术成熟,活化亚硫酸(氢)盐在有机污染物的降解领域必将占有一席之地。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐亚兵
贾宏磊
关键词:  高级氧化技术  亚硫酸(氢)盐  活化  降解  自由基  有机污染物    
Abstract: Compared to persulfate, sulfite (hydrosulfite) has lower price, more sources, and lower toxicity. During the activation of sulfite, not only the highly oxidizing free radicals such as SO4·-and SO5·- are produced, but also SO3·- which possesses oxidizability and reducibility is generated. Therefore, its autoxidation is realized when degradation of organic pollutants by activated sulfite (hydrosulfite), leading to no secondary pollution and broad development prospects. Activation pattern of sulfite (hydrosulfite) mainly contains activation of light, transition metals, carbon mate-rials and electrodes. In this paper, we review the activation mechanism of sulfite (hydrosulfite), summarize the research progress on degradation of organic pollutants by activated sulfite (hydrosulfite), sketch the influencing factors of degradation of organic pollutants by activated sulfite (hydrosulfite), analyze the existing problems of degradation of organic pollutants by activated sulfite (hydrosulfite), and discuss the deve-lopment trends of degradation of organic pollutants by activated sulfite (hydrosulfite). It can provide direction and guidance for subsequent research. At present, this technology is still at the experimental stage and the related industrial application has not been reported. In future, once the technology becomes mature, it will occupy a place in field of degradation of organic pollutants.
Key words:  advanced oxidation process    sulfite(hydrosulfite)    activation    degradation    free radical    organic pollutant
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  X703  
基金资助: 西安市碑林区科技计划项目(GX2134);西安建筑科技大学人才科技基金(RC1714);西安建筑科技大学青年科技基金(QN1509);西安建筑科技大学大学生创新创业训练计划项目(X2022189)
通讯作者:  *齐亚兵,西安建筑科技大学化学与化工学院讲师。2006年本科毕业于长安大学水利与环境学院,2009年和2013年分别在四川大学化工学院获得硕士和博士学位。2013年8月进入陕西化工研究院有限公司工作,2014年5月调入西安建筑科技大学应用化学系任教。目前主要从事传质与分离技术、水处理技术等方面的研究工作。近年来在SCI、EI和中文核心期刊发表论文40余篇。 qiyabing123@163.com   
引用本文:    
齐亚兵, 贾宏磊. 活化亚硫酸(氢)盐降解有机污染物的研究进展[J]. 材料导报, 2024, 38(3): 22060274-13.
QI Yabing, JIA Honglei. Research Advances of Degradation of Organic Pollutants by Activated Sulfite or Hydrosulfite. Materials Reports, 2024, 38(3): 22060274-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060274  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22060274
1 Jia Y P, Xue D Q, Liu Q F, et al. Chemical Industry and Engineering Progress, 2022, 41(1), 418(in Chinese).
贾艳萍, 薛东奇, 刘启帆, 等. 化工进展, 2022, 41(1), 418.
2 Chen M R, Ma K K, Zhou L. Industrial Water Treatment, 2022, 42(6), 109(in Chinese).
陈明如, 马可可, 周律. 工业水处理, 2022, 42(6), 109.
3 Guo Y G, Lou X Y, Fang C G, et al. Environmental Science & Technology, 2013, 47(19), 11174.
4 Zhou D N, Chen L, Li J J, et al. Chemical Engineering Journal, 2018, 346, 726.
5 Guo Y Z. Efficiency and mechanism of sulfate radical-based advanced oxidation process on treating dye wastewater. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2016(in Chinese).
郭一舟. 基于硫酸根自由基高级氧化技术处理染料废水效能及机理研究. 博士学位论文, 华中科技大学, 2016.
6 Wu S H, Shen L Y, Lin Y, et al. Chemical Engineering Journal, 2021, 414, 128872.
7 Qiao J L, Feng L Y, Dong H Y, et al. Environmental Science & Techno-logy, 2019, 53, 10320.
8 Xiao Q, Wang T, Yu S L, et al. Water Research, 2017, 111, 288.
9 Entezari M, Godini H, Sheikhmohammadi A, et al. Journal of Water Process Engineering, 2019, 32, 100983.
10 Milh H, Yu X Y, Cabooter D, et al. Science of the Total Environment, 2021, 764, 144510.
11 Liu Z Q, Qiu F G, Lai M T, et al. Environmental Science, 2021, 42(3), 1443(in Chinese).
刘子奇, 仇付国, 赖曼婷, 等. 环境科学, 2021, 42(3), 1443.
12 Zhang J, Zhang H L, Liu X, et al. Water Research, 2022, 210, 117974.
13 Yu X Y, Cabooter D, Dewil R. Science of the Total Environment, 2019, 688, 65.
14 Xie B H, Li X C, Huang X F, et al. Journal of Environmental Sciences, 2017, 54, 231.
15 Yu K, Li X C, Chen L W, et al. Water Research, 2018, 129, 357.
16 Liu S L, Fu Y S, Wang G S, et al. Separation and Purification Technology, 2021, 268, 118709.
17 Jung B, Farzaneh H, Khodary A, et al. Journal of Environmental Chemical Engineering, 2015, 3, 2194.
18 Sheikhmohammadi A, Yazdanbakhsh A, Moussavi G, et al. Process Safety and Environmental Protection, 2019, 123, 263.
19 Yazdanbakhsh A, Eslami A, Moussavi G, et al. Chemosphere, 2018, 191, 156.
20 Tian Y, Shen W J, Jia F L, et al. Chemical Engineering Journal, 2017, 330, 1075.
21 Azarpira H, Abtahi M, Sadani M, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374, 43.
22 Mahmoudi S, Fadaei S, Taheri E, et al. Environmental Research, 2022, 211, 113059.
23 Entezari M, Godini H, Sheikhmohammadi A, et al. Journal of Water Process Engineering, 2019, 32, 100983.
24 Yu Y T, Li S Q, Peng X Z, et al. Environmental Chemistry Letters, 2016, 14, 527.
25 Wang G S. Degradation of sulfamethoxazole in water using UV combine with Fe3+ activation of sulfite. Master's Thesis, Southwest Jiaotong University, China, 2020(in Chinese).
王广生. UV协同Fe3+活化亚硫酸盐对水中磺胺甲恶唑的降解研究. 硕士学位论文, 西南交通大学, 2020.
26 Huang Y, Han C, Liu Y Q, et al. Applied Catalysis B: Environmental, 2018, 221, 380.
27 Li K J, Fang X Z, Fu Z Y, et al. Journal of Hazardous Materials, 2020, 398, 123007.
28 Cao J, Nie W S, Huang L, et al. Applied Catalysis B: Environmental, 2019, 241, 18.
29 Zhang Y L, Chu W. Separation and Purification Technology, 2022, 291, 120900.
30 Zhao G S, Ding J, Ren J Y, et al. Chemical Engineering Journal, 2022, 438, 135663.
31 Deng X Y, Chen R, Zhao Z W, et al. Chemical Engineering Journal, 2021, 425, 131683.
32 Abdelhaleem A, Chu W, Farzana S. Chemosphere, 2020, 256, 127094.
33 Chen F, Yang Q, Yao F B, et al. Chemical Engineering Journal, 2019, 355, 624.
34 Li G, Wang C, Yan Y P, et al. Chemical Engineering Journal, 2020, 386, 124007.
35 Xie P C, Zhang L, Chen J H, et al. Water Research, 2019, 149, 169.
36 Wang Z P, Cao L S, Wan Y, et al. Chemosphere, 2021, 285, 131442.
37 Zhang M M. Experimental study on sulfite induced catalytic degradation of organic pollutants in water. Master's Thesis, North China Electric Power University, China, 2021(in Chinese).
张萌萌. 亚硫酸盐诱导催化降解水体有机污染物的实验研究. 硕士学位论文, 华北电力大学, 2021.
38 Li R, Dong H R, Tian R, et al. Separation and Purification Technology, 2020, 250, 117230.
39 Chen X Y, Miao W, Yang Y L, et al. Chemosphere, 2020, 238, 124599.
40 Zhang L. Study on the degradation of tetrabromobisphenol A by Fe(Ⅲ)/S(Ⅳ) system. Master's Thesis, Huazhong University of Science and Technology, China, 2019(in Chinese).
张立. Fe(Ⅲ)/S(Ⅳ)体系降解四溴双酚A效能及机理研究. 硕士学位论文, 华中科技大学, 2019.
41 Dong H Y, Wei G F, Yin D Q, et al. Journal of Hazardous Materials, 2020, 384, 121497.
42 Wang H B, Feng S, Wan L, et al. Environmental Chemistry, 2022, 41(2), 729(in Chinese).
王鸿斌, 冯姝, 万俐, 等. 环境化学, 2022, 41(2), 729.
43 Chen Y Q, Tong Y, Xue Y W, et al. Chemical Engineering Journal, 2020, 385, 123884.
44 Chen Y Q, Zeng B T, Lai L X, et al. Chemical Engineering Journal, 2022, 441, 135960.
45 Yang Y, Sun M Y, Zhou J, et al. Chemosphere, 2020, 244, 125588.
46 Huang L Z, Wei X L, Gao E L, et al. Applied Catalysis B: Environmental, 2020, 268, 118459.
47 Li G, Guo Y Q, Jin Y X, et al. Chemical Engineering Journal, 2021, 426, 131917.
48 Yuan G M, Pi R B, Wu Z C, et al. Chemical Industry and Engineering Progress, 2020, 39(9), 3794(in Chinese).
袁光明, 皮若冰, 吴钊成, 等. 化工进展, 2020, 39(9), 3794.
49 Chen Y Q, Li M Y, Tong Y, et al. Chemical Engineering Journal, 2019, 368, 495.
50 Shao B B, Dong H Y, Feng L Y, et al. Journal of Hazardous Materials, 2020, 384, 121303.
51 Sun M Y, Huang W Y, Cheng H, et al. Chemosphere, 2019, 228, 595.
52 Zhao X D, Wu W J, Jing G H, et al. Environmental Pollution, 2020, 260, 114038.
53 Liu Z Z, Yang S J, Yuan Y N, et al. Journal of Hazardous Materials, 2017, 324, 583.
54 Yang T, Wu S S, Mai J M, et al. Chemical Engineering Journal, 2022, 442, 136011.
55 Yuan Y N, Zhao D, Li J J, et al. Catalysis Today, 2018, 313, 155.
56 Wu Y, Xing Y Y, Zhao X D, et al. Chemical Engineering Journal, 2022, 429, 132404.
57 Ding W, Xiao W L, Huang W X, et al. Journal of Cleaner Production, 2020, 257, 120457.
58 Quan X Q, Xu P Y, Yang F, et al. Journal of Molecular Catalysis(China), 2019, 33(6), 561(in Chinese).
权晓琪, 许佩瑶, 杨帆, 等. 分子催化, 2019, 33(6), 561.
59 Zhu S R, Yang J N, Liu Y, et al. Materials Chemistry and Physics, 2020, 249, 123123.
60 Zhang C X, Liao X P, Lü Y, et al. Journal of Earth Science, 2019, 30(4), 861.
61 Sun B, Guan X H, Fang J Y, et al. Environmental Science & Technology, 2015, 49, 12414.
62 Zhong S F, Zhang H C. Water Research, 2019, 148, 198.
63 Sun B, Li D, Linghu W S, et al. Chemical Engineering Journal, 2018, 339, 144.
64 Shi Z Y, Jin C, Zhang J, et al. Chemical Engineering Journal, 2019, 359, 1463.
65 Dong Q X, Dong H R, Li Y J, et al. Journal of Hazardous Materials, 2022, 431, 128601.
66 Xiao B, Wu M, Wang Y, et al. Chemical Engineering Journal, 2021, 406, 126693.
67 Luo Y J. Degradation efficiency and mechanism of the Cu(Ⅱ) activated sulfite system for iodinated X-ray contrast media. Master's Thesis, Hunan University, China, 2020(in Chinese).
罗玉杰. Cu(Ⅱ)活化亚硫酸盐体系对碘代造影剂的降解效能及机理研究. 硕士学位论文, 湖南大学, 2020.
68 Luo T, Yuan Y N, Zhou D N, et al. Chemical Engineering Journal, 2019, 363, 329.
69 Savarimuthu I, Susairaj M J A M. ACS Omega, 2022, 7, 4140.
70 Tong R M, Fu R, Yang Z, et al. Journal of Environmental Chemical Engineering, 2022, 10, 107276.
71 Wu W J, Zhao X D, Jing G H, et al. Science of the Total Environment, 2019, 695, 133836.
72 Hu B S. Study on sulfite related advanced oxidation system and its treatment performance to wastewater. Master's Thesis, Jilin University, China, 2018(in Chinese).
呼博识. 基于SO32-的高级氧化体系处理废水的性能研究. 硕士学位论文, 吉林大学, 2018.
73 Yuan Y N. Oxidation of organic compounds in the transition metal ion-sactivated sulfite systems. Ph. D. Thesis, Wuhan University, China, 2018(in Chinese).
袁亚男. 过渡金属活化亚硫酸盐体系氧化有机污染物的研究. 博士学位论文, 武汉大学, 2018.
74 Dong H Y, Wei G F, Fan W J, et al. Chemosphere, 2018, 196, 593.
75 Yan S, Zhang C W, Hu B S, et al. Journal of Central South University(Science and Technology), 2018, 49(10), 2391(in Chinese).
闫松, 张成武, 呼博识, 等. 中南大学学报(自然科学版), 2018, 49(10), 2391.
76 Zhang K K, Sun P, Zhang Y, et al. Science of the Total Environment, 2020, 749, 142086.
77 Wu D M, Ye P, Wang M Y, et al. Journal of Hazardous Materials, 2018, 352, 148.
78 Xu Z H, Gao Y Q, Gu H, et al. Separation and Purification Technology, 2021, 268, 118615.
79 Xu J, Wang X R, Pan F, et al. Chemical Engineering Journal, 2018, 353, 542.
80 Chu D D, Dong H R, Li Y J, et al. Separation and Purification Techno-logy, 2022, 285, 120315.
81 Xiao W L. Study on electro-assisted cobalt-silicon catalyst activated sulfite system. Master's Thesis, Chongqing University, China, 2020(in Chinese).
肖伟龙. 电促进钴硅催化剂活化亚硫酸盐体系的基础研究. 硕士学位论文, 重庆大学, 2020.
82 Ding W, Xiao W L, Zheng H L, et al. Chemical Engineering Journal, 2020, 402, 126168.
83 Song G, Zhou M H, Du X D, et al. ACS EST Water, 2021, 1, 1637.
84 Chu L G, Sun Z Y, Cang L, et al. Chemical Engineering Journal, 2020, 400, 125945.
85 Jia L X, Pei X W, Yang F, et al. Water, 2019, 11, 1608.
86 Xiao Q, Yu S L. Chemical Engineering Journal, 2021, 417, 129115.
87 Cao Y, Qiu W, Li J, et al. Science of the Total Environment, 2021, 765, 142762.
[1] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[2] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[3] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[4] 张进, 谭璐, 邢宝岩, 李作鹏, 赵建国, 屈文山, 张璐. 环氧导电胶的反应动力学及其应用[J]. 材料导报, 2023, 37(8): 22020025-6.
[5] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[6] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[7] 祖丽呼玛尔·木沙江, 赵静, 肖鹏飞. 金属基纳米材料在过硫酸盐高级氧化工艺中的应用进展[J]. 材料导报, 2023, 37(4): 21040022-8.
[8] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[9] 李航, 廖建国, 毛艳瑞, 阮文强. 纳米羟基磷灰石对氯氧镁水泥降解性和体外生物活性的影响[J]. 材料导报, 2023, 37(24): 22020189-5.
[10] 聂光临, 刘一军, 汪庆刚, 黄玲艳, 吴洋, 潘利敏, 包亦望, 饶平根. 基于机械活化法制备高强韧高柔性建筑陶瓷[J]. 材料导报, 2023, 37(24): 22040120-9.
[11] 王宗乾, 申佳锟, 李禹, 李长龙, 王鹏. g-C3N4/MXene/Ag3PO4异质结催化剂构建及催化性能[J]. 材料导报, 2023, 37(22): 22030277-7.
[12] 许松江, 许志彦, 侯泽明, 宝冬梅, 周国永, 邹光龙. 环氧树脂/DOPS衍生物复合材料的阻燃性能及热降解行为[J]. 材料导报, 2023, 37(22): 22070044-7.
[13] 黄贤敏, 李紫薇, 张晓妍, 刘慧, 高红艳, 汪海. 核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料[J]. 材料导报, 2023, 37(21): 22050088-8.
[14] 程爱华, 谢倩祎. 基于油菜花粉模板制备Fe基复合材料及其催化特性[J]. 材料导报, 2023, 37(21): 22040339-6.
[15] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed