Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22030250-5    https://doi.org/10.11896/cldb.22030250
  无机非金属及其复合材料 |
生活垃圾焚烧渣细骨料混凝土冻融及自愈试验
石东升1,†, *, 张鹏1,†, 姜文超1,2, 韩平1,3, 马政1,3
1 内蒙古工业大学土木工程学院,呼和浩特 010000
2 内蒙古电力(集团)有限责任公司蒙电项目建管分公司,呼和浩特 010000
3 兴泰建设集团有限公司,呼和浩特 010000
Freeze-thawing and Self-healing Test of Fine Aggregate Concrete with Municipal Solid Waste Incineration Slag
SHI Dongsheng1,†,*, ZHANG Peng1,†, JIANG Wenchao1,2, HAN Ping1,3, MA Zheng1,3
1 School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010000, China
2 Mengdian Project Construction and Management Branch, Inner Mongolia Electric Power (Group) Co., Ltd., Hohhot 010000, China
3 Xingtai Construction Group Co., Ltd., Hohhot 010000, China
下载:  全 文 ( PDF ) ( 7739KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对生活垃圾焚烧渣量大、难以利用的问题,本工作研究了利用生活垃圾焚烧渣代替天然砂用作混凝土细骨料。选用0.2、0.4、0.6三种水胶比及0%、25%、50%(质量分数)三种代砂率,研究了生活垃圾焚烧渣细骨料混凝土和普通混凝土在不同冻融次数和冻融后自愈的宏观力学性能和微观结构的变化规律。结果表明,随冻融循环次数的增加两种混凝土的抗压强度均逐渐降低,但生活垃圾焚烧渣细骨料混凝土强度降低幅度小于普通混凝土,说明其抗冻融性能优于普通混凝土。经过自愈养护,焚烧渣混凝土与普通混凝土强度均有一定上升,由于垃圾焚烧渣具有一定的潜在水硬性,自愈强度增长率要大于普通混凝土。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石东升
张鹏
姜文超
韩平
马政
关键词:  生活垃圾焚烧渣  混凝土  细骨料  冻融循环  自愈    
Abstract: Aiming at the problem of a large amount of municipal solid waste (MSW) incineration slag and difficult utilization, the research topic of using MSW incineration slag instead of natural sand as the fine aggregate of concrete is proposed. Three water-binder ratios ( 0.2, 0.4 and 0.6) and three sand replacement ratios ( 0%, 25% and 50% ) were selected. The change laws of macro-mechanical properties and micro-structure of MSW incineration slag fine aggregate concrete and ordinary concrete under different freeze-thaw cycles and self-healing after freeze-thaw were studied. The results show that the compressive strength decreases gradually with the increase of freeze-thaw cycles, but the strength reduction of MSW incineration slag fine aggregate concrete is less than that of ordinary concrete, indicating that the freeze-thaw resistance is better than that of ordinary concrete. After self-healing curing, the strength of MSW incineration slag concrete and ordinary concrete has a certain increase, because of the potential hydraulic hardness of MSW incineration slag, the growth rate of self-healing strength is greater than that of ordinary concrete.
Key words:  municipal solid waste incineration slag    concrete    fine aggregate    freeze-thaw cycles    self-healing
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TU502  
基金资助: 国家自然科学基金(51868058;52068058);兴泰建设集团研究开发项目(XTXM-RD-01)
通讯作者:  *石东升,内蒙古工业大学土木工程学院教授、博士研究生导师。2002年毕业于内蒙古工学院工业与民用建筑专业,获工学学士学位;2005年毕业于哈尔滨工业大学结构工程,获得工学硕士学位;2011年毕业于Utsunomiya university,获得博士学位。国家一级结构注册工程师、中国土木工程学会混凝土与预应力混凝土分会委员、内蒙古自治区“草原英才”。目前主要从事新型混凝土结构及预应力结构、新型低环境负荷建筑材料、土木工程结构抗震技术等方面的研究工作。shids@imut.edu.cn   
作者简介:  张鹏,内蒙古工业大学土木工程学院硕士研究生。2020年毕业于内蒙古农业大学土木工程专业,获工学学士学位;2020年至今就读于内蒙古工业大学结构工程专业;以第一作者身份在国外学术期刊发表论文1篇,目前主要从事新型混凝土材料的研究工作。共同第一作者
引用本文:    
石东升, 张鹏, 姜文超, 韩平, 马政. 生活垃圾焚烧渣细骨料混凝土冻融及自愈试验[J]. 材料导报, 2023, 37(19): 22030250-5.
SHI Dongsheng, ZHANG Peng, JIANG Wenchao, HAN Ping, MA Zheng. Freeze-thawing and Self-healing Test of Fine Aggregate Concrete with Municipal Solid Waste Incineration Slag. Materials Reports, 2023, 37(19): 22030250-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030250  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22030250
1 National Bureau of Statistics of the People 's Republic of China. China statistical yearbook. China Statistics Press, China, 2021, pp. 147 (in Chinese).
中华人民共和国国家统计局. 中国统计年鉴. 中国统计出版社, 2021, pp.147.
2 Shi D S, Liu S J, Song J Z. Concrete, 2021(3), 145(in Chinese).
石东升, 刘思洁, 宋吉钊. 混凝土, 2021(3), 145.
3 Pal S C, Mukherjee A, Pathak S R. Cement and Concrete Research, 2003, 33(9),1481.
4 Cao D F, Zhou M, Ge W J, et al. Industrial Construction, 2015, 45(2), 32(in Chinese).
曹大富, 周敏, 葛文杰, 等. 工业建筑, 2015, 45(2), 32.
5 Liu S J. The study on mix design and mechanical properties about concrete using MSW bottom slag as fine aggregate.Master's Thesis, Inner Mongolia University of Technology, China, 2020(in Chinese).
刘思洁. 生活垃圾焚烧灰渣代砂混凝土配合及力学性能试验研究. 硕士学位论文, 内蒙古工业大学, 2020.
6 Huang Y. The study on mechanical properties of simulating component of concrete project with MSWI as fine aggregate. Master's Thesis, Inner Mongolia University of Technology,China, 2021(in Chinese).
黄元. 生活垃圾焚烧灰渣代砂混凝土工程模拟构件力学性能研究. 硕士学位论文, 内蒙古工业大学, 2021.
7 依田彰彦, 横室隆. 日本建築学会大会学術講演梗概集. 関東, 1984. pp. 9.
8 国府勝郎, 下山善秀. セメント·コンクリート, 2006, 714. 27
9 Liu C, Liu G H. Construction and Building Materials, 2021, 267, 120958.
10 Wang X X, Shen X D, Wang H L, et al. Materials Reports, 2017, 31(6), 130 (in Chinese).
王萧萧, 申向东, 王海龙, 等. 材料导报, 2017, 31(6), 130.
11 Li K. Study on the hydraulic properties of granulated blast furnace slag and its effect on the mechanical properties of concrete. Master's Thesis, Inner Mongolia University of Technology, China, 2020(in Chinese).
李科. 粒化高炉矿渣水硬性及对混凝土力学性能影响的研究. 硕士学位论文, 内蒙古工业大学, 2020.
12 Liu X Y, Yao W, Zheng X F, et al. Journal of Building Materials, 2005 (2), 184 (in Chinese).
刘小艳, 姚武, 郑晓芳, 等. 建筑材料学报, 2005(2), 184.
13 Fang J, Wang H, Wu S X. China Concrete and Cement Products, 2003(6), 14(in Chinese).
方璟, 王宏, 武世翔. 混凝土与水泥制品, 2003(6), 14.
14 Zhao Y R, Liu F F, Wang L, et al. Materials Reports, 2020, 34(12), 12064 (in Chinese).
赵燕茹, 刘芳芳, 王磊, 等. 材料导报, 2020, 34(12), 12064.
15 Deng X H, Gao X Y, Wang R, et al. Materials Reports, 2021, 35(16), 16028(in Chinese).
邓祥辉, 高晓悦, 王睿, 等. 材料导报, 2021, 35(16), 16028.
16 Chen Y W, Zhang Y T, Bu K, et al. Journal of Shenyang Jianzhu University(Natural Science), 2020, 36(6), 1091 (in Chinese).
陈彦文, 张益腾, 卜可, 等. 沈阳建筑大学学报(自然科学版), 2020, 36(6), 1091.
17 Zhang J K, Yuan J, Liu W B, et al. Journal of Tongji University(Natural Science), 2018, 46(1), 53 (in Chinese).
张家科, 袁捷, 刘文博, 等. 同济大学学报(自然科学版), 2018, 46(1), 53.
18 Dong Y T, Meng L, Lan L, et al. Railway Engineering, 2016(3), 157(in Chinese).
董阳涛, 孟磊, 兰岚, 等. 铁道建筑, 2016(3), 157.
19 Zhang F Q, Wang H B, Wang Q C. China Concrete and Cement Pro-ducts, 2009(2), 10 (in Chinese).
张粉芹, 王海波, 王起才. 混凝土与水泥制品, 2009(2), 10.
20 Li B, Mao J, Nawa T, et al. Construction & Building Materials, 2017, 147(30), 79.
21 Liu R Y, Chi Y, Chen S Y, et al. International Journal of Concrete Structures and Materials, 2020, 14(1), 16.
22 Zhao Y R, Liu F F, Wang L, et al. Journal of Building Materials, 2020, 23(6), 1328. (in Chinese).
赵燕茹, 刘芳芳, 王磊, 等. 建筑材料学报, 2020, 23(6), 1328.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[3] 张洪智, 金祖权, 姜能栋, 葛智, Erik Schlangen, 凌一峰, Branko Šavija, 王铮. 基于分段步进式弹塑性格构模型的混凝土破坏过程细观模拟[J]. 材料导报, 2023, 37(8): 21100198-7.
[4] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[5] 龚鹏, 程小伟, 武治强, 张高寅, 张春梅. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报, 2023, 37(7): 21100107-7.
[6] 孔丽娟, 梁增蕴, 鹿桓, 赵文静. 重力污水管道混凝土的加速腐蚀模拟研究[J]. 材料导报, 2023, 37(7): 21060148-7.
[7] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[8] 张苑竹, 杨佳铭, 魏纲, 黄森乐. 基于扩散-对流模型的海底混凝土隧道耐久寿命预测[J]. 材料导报, 2023, 37(6): 21060165-5.
[9] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[10] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[11] 李嘉, 秦时髦, 张恒龙. 基于STC-SMA层间性能的沥青混合料设计与评估[J]. 材料导报, 2023, 37(5): 21080246-8.
[12] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[13] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[14] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[15] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed