Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22060164-6    https://doi.org/10.11896/cldb.22060164
  宇航材料 |
空间太阳能电站关键材料技术需求展望
高鸿1, 樊彦艳1, 王立2,*, 刘自立2, 何端鹏1, 于利夫1, 文明1
1 中国空间技术研究院,北京 100094
2 中国空间技术研究院钱学森空间技术实验室,北京 100094
Demand Outlook of Key Materials and Technologies for Space Solar Power Station
GAO Hong1, FAN Yanyan1, WANG Li2,*, LIU Zili2, HE Duanpeng1, YU Lifu1, WEN Ming1
1 China Academy of Space Technology, Beijing 100094, China
2 Qian Xuesen Space Technology Laboratory, CAST, Beijing 100094,China
下载:  全 文 ( PDF ) ( 2889KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 空间太阳能电站(Space solar power station,SSPS)作为可再生空间能源系统,需要基于大型展开结构与控制技术、高效太阳能转化技术、超大功率电力传输与管理技术、远距离无线能量传输技术、在轨组装与维护技术等多种关键技术协同应用进行构建。材料技术作为上述各类关键技术中最基础的技术支撑,也将面临更大的挑战。本文通过分析空间太阳能电站建设难点,阐释了大尺寸桁架、柔性太阳能电池、超大功率导电旋转关节、在轨原位制造等关键技术对轻量化、柔性化、智能化新材料的发展需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高鸿
樊彦艳
王立
刘自立
何端鹏
于利夫
文明
关键词:  空间太阳能电站  关键材料需求    
Abstract: As a renewable energy system, space solar power satellite (SSPS) needs to be collaboration applied based on a variety of key technologies, such as large-scale expanded structure and control technology, complex and efficient solar energy conversion technology, ultra-large power transmission and management technology, long-distance wireless energy transmission technology, on-orbit assembly and maintenance technology. Material technology, as the most basic support of the above key technologies, also faces greater challenges. By analyzing the difficulties in space solar power station construction, this paper explains the development needs of lightweight, flexible and intelligent new materials for key technologies such as large-size truss, flexible solar cell, super-power conductive rotary joint and in-orbit in-situ manufacturing.
Key words:  space solar power station    critical materials requirements
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TB39  
通讯作者:  * wl5135@126.com   
作者简介:  高鸿,研究员。2008年吉林大学化学学院博士毕业后,于日本东京工业大学高分子物理专业做访问学者。2010年就职于中国空间技术研究院宇航物资保障事业部。主要从事航天器材料需求规划、材料空间复杂使役环境测试与评价技术、材料应用研制技术体系以及宇航材料工程技术体系等研究。已发表文章70余篇。
王立,博士研究生导师,中国空间技术研究院钱学森空间技术实验室高级研究员,航天科技集团公司飞行器总体技术学术带头人。1990年获西安交通大学电气工程专业硕士学位,2001年获中国空间技术研究院物理电子专业博士学位。主要从事卫星抗辐射加固技术及空间太阳能发电站系统研究。发表论文70余篇。
引用本文:    
高鸿, 樊彦艳, 王立, 刘自立, 何端鹏, 于利夫, 文明. 空间太阳能电站关键材料技术需求展望[J]. 材料导报, 2022, 36(22): 22060164-6.
GAO Hong, FAN Yanyan, WANG Li, LIU Zili, HE Duanpeng, YU Lifu, WEN Ming. Demand Outlook of Key Materials and Technologies for Space Solar Power Station. Materials Reports, 2022, 36(22): 22060164-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060164  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22060164
1 Lei S Z,Mao S Z,Yan H S. Science, 2019, 71(5), 43(in Chinese).
雷仕湛,毛书正,闫海生.科学,2019,71(5),43.
2 Hou X B,Wang L. Science and Technology Innovation Herald, 2014(30), 4(in Chinese).
侯欣宾,王立.科技创新导报,2014(30),4.
3 Mankins J C. Acta Astronautica,1997,41(4-10),347.
4 Glaser P E. Science,1968,162,867.
5 Wang L, Cheng Z A, Zhang X H, et al. Space Internationa, 2017(10),16.
王立,成正爱,张兴华,等. 国际太空, 2017(10),16.
6 Yang Y,Duan B Y, Huang J, et al. Chinese Space Science and Technology, 2014, 34(5),18(in Chinese).
杨阳, 段宝岩, 黄进,等. 中国空间科学技术,2014, 34(5),18.
7 Hou X B, Wang L, Zhang X H, et al. Journal of Astronautics, 2015, 36(11), 1332(in Chinese).
侯欣宾,王立,张兴华,等. 宇航学报,2015, 36(11), 1332.
8 Smeenk N J, Mooney C, Feenstra J, et al. Polymer Degradation and Stability, 2013, 98(12), 2503.
9 Cao N N, Chen M J, Ye X J. Power Source Technology, 2016, 40(3), 600(in Chinese).
曹娜娜, 陈萌炯, 叶晓军.电源技术, 2016, 40(3), 600.
10 Qian M, Mao X, Wu M, et al. Advanced Materials Technologies, 2021, 6(12), 2100603.
11 Wilt D, Howard A, Snyder N, et al.In: 37th IEEE Photovoltaic Specia-lists Conference. Seattle, 2011, pp.001949.
12 Wu D Z, Qi S L. High performance polyimide fiber and its application.Science Press,China, 2020, pp.172(in Chinese).
武德珍,齐胜利. 高性能聚酰亚胺纤维及应用. 科学出版社, 2020,pp.172
13 Zhang Y H, Tao W, Zhang Y, et al. Composites Science and Technology, 2018, 165,148.
14 Zhao W Y, Yu R, Dong W Y, et al. Composites Science and Technology, 2021, 203,1.
15 Xie Z W,Gong Y C,Shi S C,et al. Journal of Astronautics, 2014,35(5),491(in Chinese).
谢宗武,宫钇成,史士财, 等. 宇航学报,2014,35(5),491.
16 Geppert U,Biering B,Lura F,et al.Advances in Space Research,2011,48(11), 1695.
17 Leng J,Lan X,Liu Y,et al.Progress in Materials Science,2011,56(7), 1077.
18 Jia H P,Hou X B,Wang L,et al. Space Electronic Technology, 2016 (1), 38(in Chinese).
贾海鹏,侯欣宾,王立,等. 空间电子技术,2016(1),38.
19 Yuan Y, Gan X P, Lai Y T, et al. Composite Interfaces, 2020, 27(5),449.
20 Yang X W, Han J T, Liu J, et al. Journal of Astronautics, 2021,42(11),1343(in Chinese).
杨兴文,韩静涛,刘靖, 等. 宇航学报, 2021,42(11),1343.
[1] 刘欢, 秦凌浩. 血小板囊泡作为药物递送载体的研究综述[J]. 材料导报, 2022, 36(19): 21010078-8.
[2] 戎鑫, 李建军, 但宏兵, 薛长国, 高明, 李梦, 刘银. 磁化水的特性、机理及应用研究进展[J]. 材料导报, 2022, 36(9): 21020032-7.
[3] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[4] 马驰, 王连慧, 潘崇祥, 刘紫婷, 王娜, 史颖. 泡孔聚合物压电材料的研究进展[J]. 材料导报, 2021, 35(7): 7199-7204.
[5] 牛润萍, 庚立志, 范莹莹. 分离膜在膜液体除湿中的应用进展[J]. 材料导报, 2020, 34(15): 15069-15074.
[6] 王永宝, 原元, 赵人达, 张晋杰. 赤泥地聚物混凝土力学性能研究现状及发展趋势[J]. 材料导报, 2020, 34(15): 15102-15109.
[7] 王兰馨, 姚山, 温斌. 第一性原理计算Fe含量对高熵合金AlFexTiCrZnCu力学性能的影响[J]. 材料导报, 2019, 33(Z2): 356-359.
[8] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[9] 张大旺,王栋民. 地质聚合物混凝土研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1519-1527.
[10] 马凤森,喻炎,章捷,陈海波. 生物材料细胞毒性评价研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 76-85.
[11] 何雄, 孙志刚. 非磁性半导体磁阻效应物理模型研究*[J]. 《材料导报》期刊社, 2017, 31(17): 6-11.
[12] 郭凯, 于海龙, 唐恩凌, 王猛, 贺丽萍, 刘淑华. 钛表面等离子体电解氧化制备的Ca-P-Si生物活性陶瓷膜的电化学性能*[J]. 《材料导报》期刊社, 2017, 31(14): 61-66.
[13] 赵嘉兰, 王悦敏, 牛亚伟, 董晓婷, 秦凌浩. 内源性外泌体作为药物递释系统的研究进展*[J]. CLDB, 2017, 31(13): 160-165.
[14] 纪志永, 黄智辉, 袁俊生, 李非, 周俊奇. 基于离子交换机理的尖晶石型LiMn2O4脱/嵌锂模拟*[J]. 《材料导报》期刊社, 2017, 31(12): 131-135.
[15] 王志勇, 蔡志祥, 刘国承, 孙智龙, 张铁. HAP-TCP复合生物陶瓷浆料的激光3D打印及性能研究[J]. 材料导报, 2021, 35(Z1): 104-107.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed