Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21040303-6    https://doi.org/10.11896/cldb.21040303
  金属与金属基复合材料 |
应力比对服役后X56钢腐蚀疲劳裂纹扩展速率的影响
高旭东1, 邵永波1,2,*, 郭永健2, 钟颖2, 罗霞飞1
1 西南石油大学机电工程学院,成都 610500
2 西南石油大学土木工程与测绘学院,成都 610500
Effect of Stress Ratio on the Corrosion Fatigue Crack Growth Rate of X56 Steel After Service
GAO Xudong1, SHAO Yongbo1,2,*, GUO Yongjian2, ZHONG Ying2, LUO Xiafei1
1 School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
2 School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 7309KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为研究服役后API 5L X56钢海底输油双层管道的腐蚀疲劳裂纹扩展速率(FCGR),分别在海水和空气环境下对管道上截取的标准紧凑拉伸(CT)试样进行不同应力比(R=0.1、0.2、0.3、0.4、0.5)的疲劳裂纹扩展(FCG)试验。稳定裂纹扩展初期,在给定的应力强度因子幅值(ΔK=35 MPa·m0.5)下,服役后X56钢在海水环境下的疲劳裂纹扩展速率(da/dN)约为空气中的1.64倍;随着ΔK的增大,海水腐蚀作用越来越小。综合分析应力比对海水环境下X56钢的疲劳裂纹扩展曲线的影响,结果发现:应力比对裂纹稳定扩展初期阶段的疲劳裂纹扩展速率影响较大,低应力比(R=0.1、0.2、0.3)对裂纹稳定扩展中间稳定阶段的疲劳裂纹扩展速率影响较小,高应力比(R=0.4、0.5)状态下裂纹稳定扩展整个阶段的腐蚀疲劳裂纹扩展速率明显提高。扫描电镜下CT试样的疲劳断口均为穿晶型断裂。海水腐蚀环境中,随着应力比的增大,解理断裂形成的解理台阶的晶面面积和高度差逐渐减小,疲劳断口越来越平坦,疲劳裂纹扩展方式由撕裂型向解理型进行转变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高旭东
邵永波
郭永健
钟颖
罗霞飞
关键词:  X56钢  双层管  应力比  海水  Paris定理  疲劳裂纹扩展速率    
Abstract: To study the corrosion fatigue crack growth rate (FCGR) of the API 5L X56 pipe-in-pipe submarine pipeline after service, fatigue crack growth (FCG) tests with different stress ratios (R=0.1, 0.2, 0.3, 0.4, 0.5) were carried out on standard compact tensile (CT) specimens taken from the pipeline in seawater and air, respectively. At the initial stage of stable crack growth, within a given stress intensity factor range (ΔK=35 MPa·m0.5), the fatigue crack growth rate (da/dN) of the X56 steel after service in seawater is about 1.64 times that in air, and with the increase of ΔK, the influence of seawater decreases gradually. A comprehensive analysis of the effect of stress ratio on the fatigue crack growth curves of the X56 steel in seawater is conducted. It is found that stress ratio has a great influence on the FCGR in the initial stage of stable crack growth. A low-stress ratio (R=0.1, 0.2, 0.3) has little effect on the fatigue crack growth rate in the intermediate stable stage of stable crack growth, while a high-stress ratio (R=0.4, 0.5) increases the fatigue crack growth rate in the whole stage of stable crack growth. The fatigue fracture faces of different CT specimens observed by scanning electron microscopes are all transcrystalline fractures. In seawater, as stress ratio increases, the crystal face area and the height difference of the cleavage step formed by cleavage fracture gradually decrease and the fatigue fracture face becomes flatter. Accordingly, the fatigue crack propagation mode changes from tearing to cleaving.
Key words:  X56 steel    pipe-in-pipe    stress ratio    seawater    Paris law    fatigue crack growth rate
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TG172. 5  
基金资助: 请扫描二维码访问本文网络展示页面以获取补充信息(Supplementary Information) 国家自然科学基金(52078441);四川省青年科技创新研究团队(2019JDTD0017);四川省科技创新苗子工程(2020039)
通讯作者:  *ybshao@swpu.edu.cn   
作者简介:  高旭东,2016年毕业于辽宁石油化工大学,获得学士学位。2017年9月至今在西南石油大学机电工程学院攻读博士学位。
邵永波,教授,博士研究生导师。本科和硕士研究生毕业于清华大学工程力学系,2005年获得新加坡南洋理工大学博士学位。发表学术论文140余篇,其中SCI收录80余篇。一直从事结构工程、海洋工程钢结构和机械强度理论方面的教学科研工作。专注于钢结构疲劳断裂、抗震、抗火、抗冲击性能及结构安全评估和加固方面的研究。
引用本文:    
高旭东, 邵永波, 郭永健, 钟颖, 罗霞飞. 应力比对服役后X56钢腐蚀疲劳裂纹扩展速率的影响[J]. 材料导报, 2022, 36(15): 21040303-6.
GAO Xudong, SHAO Yongbo, GUO Yongjian, ZHONG Ying, LUO Xiafei. Effect of Stress Ratio on the Corrosion Fatigue Crack Growth Rate of X56 Steel After Service. Materials Reports, 2022, 36(15): 21040303-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040303  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21040303
1 Bai Y, Bai Q. Subsea engineering handbook, Gulf Professional Publis-hing, 2012, pp.94.
2 Jiang M S. Life extension analysis of subsea pipeline form XJ30-2FDD to XJ24-3FDD. Master's Thesis, Southwest Petroleum University, China, 2018(in Chinese).
蒋孟生, XJ30-2至XJ24-3海底管道延寿分析. 硕士学位论文, 西南石油大学, 2018.
3 Liang H, Li H C, Hao X G, et al. Oil & Gas Storage and Transportation, 2015, 34(4), 439 (in Chinese).
梁浩, 李海川, 郝兴国, 等.油气储运, 2015, 34(4), 439.
4 Gao X D, Shao Y B, Xie L Y, et al. Materials Reports B: Research Papers, 2020, 34(1), 123(in Chinese).
高旭东, 邵永波, 谢丽媛, 等. 材料导报:研究篇, 2020, 34(1), 123.
5 Javidi M, Horeh S B. Corrosion Science. 2014, 80, 213.
6 Cheng A, Chen N Z. Ocean Engineering, 2017, 142, 10.
7 Pereira J C R, Jesus A M P, Xavier J, et al. International Journal of Fatigue, 2020, 134, 105482.
8 Xu K, Qiao G Y, Wang J S, et al. International Journal of Fatigue, 2020, 139, 105788.
9 Liu J Y. Engineering critical assessment on X56 pipeline steel. Master's Thesis, Tianjin University, China, 2004(in Chinese).
刘俊龑. X56海底管线的ECA评估. 硕士学位论文, 天津大学, 2004.
10 Guo Y, Zheng C. International Journal of Electrochemical Science, 2012, 7(11), 10633.
11 Zheng C B, Huang Y L, Huo C Y, et al. Journal of Chinese Society For Corrosion and Protection, 2009, 29(1), 19(in Chinese).
郑传波, 黄彦良, 霍春勇,等.中国腐蚀与防护学报, 2009, 29(1), 19.
12 Zhu Y, Huang Y, Zheng C, et al. Materials & Corrosion, 2007, 58(6), 447.
13 Wei L, Wang S Y, Liu G S, et al. Journal of Mechanical Strength, 2016, 38(1), 64(in Chinese).
韦龙, 王时越, 刘国寿,等.机械强度, 2016, 38(1), 64.
14 Cheng A K, Chen N Z. Ocean Engineering, 2017, 142, 10.
15 GB/T228.1-2010《金属材料 拉伸试验第1部分: 室温试验方法》. 中华人民共和国标准化管理委员会, 北京, 2010.
16 Zhang H J, Shao Y B, Yang D P. China Offshore Oil and Gas, 2018, 30(6), 158 (in Chinese).
张衡镜, 邵永波, 杨冬平.中国海上油气, 2018, 30(6),158.
17 Li L, Yang Y H, Chen G, et al. Fatigue & Fracture of Engineering Materials and Structures, 2014, 37(10), 1124.
18 GB /T 6398-2017《金属材料疲劳裂纹扩展速率试验方法》. 中华人民共和国标准化管理委员会, 北京, 2017.
19 ASTM: E647-13. Standard test method for measurement of fatigue crack growth rates. Annual Book of ASTM Standards, USA, 2008.
20 Chen Y Z, Cao Y G, Huang Y S, et al. The Ocean Engineering, 2019, 37(2), 96(in Chinese).
陈宜展, 曹永港, 黄艳松,等.海洋工程, 2019, 37(2), 96.
21 Chu W Y, Qiao L J, Chen Q Z, et al. Fracture and environmental fracture, Science Press, China, 2000(in Chinese).
褚武扬, 乔利杰, 陈奇志, 等. 断裂与环境断裂, 科学出版社, 2000.
[1] 许兵, 姚兴洁, 刘佳, 张旭, 杨晓彤, 郭培勋, 张新玉. 面向太阳能界面蒸发的纳米光热材料与系统设计研究[J]. 材料导报, 2023, 37(S1): 23030028-8.
[2] 陈宗平, 黎盛欣, 周济, 戴上秦. 海洋环境GFRP筋海水海砂混凝土梁受力性能试验及承载力计算[J]. 材料导报, 2023, 37(20): 22040207-10.
[3] 钟颖, 邵永波, 高旭东, 罗霞飞, 朱红梅, 杨冬平. 应力比对EH36钢在海洋腐蚀环境中疲劳裂纹扩展速率的影响[J]. 材料导报, 2023, 37(19): 22050330-7.
[4] 刘晋铭, 张寿松, 俞煌, 梅勇. 砂胶比对海水拌合全珊瑚骨料混凝土动态力学性能的影响[J]. 材料导报, 2023, 37(18): 22010233-7.
[5] 姜万珩, 张奇亮, 牛璐, 刘梁, 黄一, 徐云泽. 921A高强碳素钢在天然流动海水中的腐蚀行为[J]. 材料导报, 2023, 37(18): 22030153-8.
[6] 孙冠泽, 曹睿, 周鑫, 王红卫. TNM-TiAl合金室温高周疲劳性能研究[J]. 材料导报, 2023, 37(12): 21090297-7.
[7] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[8] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[9] 李心, 郭琳, 黄金的, 王丽, 谢海泉, 叶立群. 碳材料/甲壳素复合水凝胶高效太阳能海水淡化[J]. 材料导报, 2022, 36(12): 21030098-6.
[10] 王传林, 刘泽平, 张腾腾, 张宇轩. 海水及养护方式对硅酸盐水泥性能的影响[J]. 材料导报, 2022, 36(10): 21010137-7.
[11] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[12] 曹成昊, 郭安然, 刘家臣, 张军军. 复合树脂/空心微珠耐高温浮力材料的制备及性能[J]. 材料导报, 2021, 35(2): 2185-2190.
[13] 杨德龙, 季旭, 陈颖, 王聪, 韩景阳, 徐海洋, 廖超. 纳米材料在太阳能蒸馏中的应用研究进展[J]. 材料导报, 2020, 34(21): 21115-21124.
[14] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[15] 徐金勇, 吴庆丹, 魏新龙, 肖金坤, 张超. 电弧喷涂耐海水腐蚀金属涂层的研究进展[J]. 材料导报, 2020, 34(13): 13155-13159.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed