Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21050040-8    https://doi.org/10.11896/cldb.21050040
  无机非金属及其复合材料 |
木钙源EICP溶液固化路基黄土性能研究
田威, 李腾, 贾能*, 贺礼, 张雪珂, 张旭东
长安大学建筑工程学院,西安 710061
Properties of Subgrade Loess Solidified by Calcium Lignosulfonate-EICP Solution
TIAN Wei, LI Teng, JIA Neng*, HE Li, ZHANG Xueke, ZHANG Xudong
School of Civil Engineering and Architecture,Chang'an University, Xi'an 710061,China
下载:  全 文 ( PDF ) ( 11536KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 黄土地区有砟货用铁路路基遇水强度下降,严重影响线路的正常运营。针对该工程问题,采用植物源脲酶诱导碳酸钙沉积技术固化路基黄土,在胶凝液中开展了以环保型木钙代替传统钙源进行技术改进的系统研究。结果表明:首先,木钙源EICP溶液能同时显著提高黄土的无侧限抗压强度和抗剪强度。其中,无侧限抗压强度提高至0.232 MPa,提高了20.8%;抗剪强度指标C值提高至69.06 kPa,提高了31.2%;Φ值提高至26.8°,提高了52.3%。其次,木钙源EICP溶液的抗剪切效果明显优于传统氯化钙源和乙酸钙源的EICP溶液,并且各组分存在最优浓度。其中,1 000 U/g活性脲酶的最优浓度为3 g/L,尿素的最优浓度为1 mol/L,木钙的最优浓度为1 mol/L。随着各组分掺量的增加,黄土的抗剪强度呈现先增大后减小的规律。最后,通过XRD、SEM等微观试验结果分析得出木钙源EICP溶液改良黄土强度的作用机理,发现其中脲酶诱导产生的碳酸钙晶体既胶结了黄土骨架颗粒,也填充了粒间孔隙,同时提高了土颗粒间的摩擦强度和粘结强度,最终改善土体的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田威
李腾
贾能
贺礼
张雪珂
张旭东
关键词:  脲酶诱导碳酸钙沉积(EICP)  木钙  黄土  强度  细观机制    
Abstract: The mechanical loss of subgrade loess contacting with water impacts gravelythe line's circulation. Facing to the loess subgrade engineering issue, attempts to improve the loess strength using the EICP technology, a process of calcium carbonate precipitation induced by plant-extracted urease. Especially, replacing the traditional calcium source with environmentally friendly calcium lignosulfonate in the cementation process of the EICP technology improvement was studied systematically. The results show that firstly EICP solution of calcium lignosulfonate can significantly improve both the lateral unlimited compressive strength and shear strength of loess, wherein the compressive one increases to 0.232 MPa, increased by 20.8%, the C value of shear strength index increases to 69.06 kPa, increased by 31.2%, and the Φ value increases to 26.8°, increased by 52.3%. Secondly, the shear improvement effect of the loess with EICP solution of calcium lignosulfonate is obviously better than that of the loess with EICP solution of calcium chloride and the one of calcium acetate. The optimal concentration of each component of calcium lignosulfonate-EICP solution is 3 g/L for 1 000 U/g active urease, 1 mol/L for urea and 1 mol/L for calcium lignosulfonate. Moreover, with the increase of the dosage of calcium lignosulfonate-EICP solution, the shear strength of the loess primarily increases but then decreases. Finally, microscopic test results (XRD and SEM) demonstrate that the mechanism of the loess solidified by calcium lignosulfonate-EICP solution is mainly linked to the new calcium carbonate deposits. The deposits were induced both on the surface of the loess skeleton particles and in pore filling. As a result, the friction strength between the loess skeleton particles rise up, as well as the bonding connection strength reinforced, so that the mechanical properties of loess are improved in the end.
Key words:  urease-induced calcium carbonate deposition (EICP)    calcium lignosulfonate    loess    strength    microscopic mechanism
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TU458  
基金资助: 国家自然科学基金(51579013);中央高校自然科学基金(300102280106);陕西省自然科学基础研究计划(2021JQ-232)
通讯作者:  *neng.jia@chd.edu.cn   
作者简介:  田威,2009年西安理工大学本硕博毕业,现任长安大学教授、博士研究生导师,主要从事岩土工程数值仿真、岩土材料细观力学分析方面的研究工作,代表作30多篇,其中SCI 16篇,TOP 4篇,EI 8篇,专著1部。
贾能,2009年东南大学本科,2012年ESTP和ENPC双硕士,2019年巴黎东大学博士。现任长安大学讲师、留学生硕导,主要从事地基加固、环境岩土等相关的基础工程灾害的研究工作。发表参与9篇论文,其中6篇英文,含2篇EI收录。
引用本文:    
田威, 李腾, 贾能, 贺礼, 张雪珂, 张旭东. 木钙源EICP溶液固化路基黄土性能研究[J]. 材料导报, 2022, 36(15): 21050040-8.
TIAN Wei, LI Teng, JIA Neng, HE Li, ZHANG Xueke, ZHANG Xudong. Properties of Subgrade Loess Solidified by Calcium Lignosulfonate-EICP Solution. Materials Reports, 2022, 36(15): 21050040-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050040  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21050040
1 Xu Z J,Lin Z G,Zhang M S. Chinese Journal of Rock Mechanics and Engineering,2007(7),1297(in Chinese).
徐张建,林在贯,张茂省.岩石力学与工程学报,2007(7),1297.
2 Wu G H,Wang J D,Ma W,et al. Journal of Engineering Geology,2016,24(1),102(in Chinese).
吴光辉,王家鼎,马威,等.工程地质学报,2016,24(1),102.
3 Zhu F J,Nan J J,Wei Y Q,et al. Chinese Journal of Geological Hazards and Prevention,2019,30(2),128(in Chinese).
朱凤基,南静静,魏颖琪,等.中国地质灾害与防治学报,2019,30(2),128.
4 Zhang Y,Zhang X M,Zhou Z J. Highway,2020,65(8),69(in Chinese).
张瑜,张兴明,周志军.公路,2020,65(8),69.
5 Cheng Y J,Tang C S,Xie Y H,et al. Journal of Engineering Geology,2021,29(1),44 (in Chinese).
程瑶佳,唐朝生,谢约翰,等.工程地质学报, 2021,29(1), 44.
6 Zheng X Y. Transportation World,2019(26), 39(in Chinese).
郑翔友.交通世界,2019(26),39.
7 Zeng J J. Experimental study on physical and mechnical properties of expansive soil improvedby biological enzymes.Master's Thesis,Central South University of Forestry and Technology, China,2017(in Chinese).
曾娟娟.生物酶改良膨胀土物理力学特性试验研究.硕士学位论文,中南林业科技大学,2017.
8 Liang S H,Chen J T,Niu J G,et al. Marine Georesources & Geotechnology,2020,38(4),1.
9 Whiffin V S,Van Passen L A,Harkes M P. Geomicrobiology Journal,2007,24(5),417.
10 Van Paassen L A. Biogrout ground improvementby microbial induced carbonate precipitation. Ph.D.Thesis,Murdoch University,Australia,2009.
11 Xu L D. Sichuan Building Materials,2020,46(10),74(in Chinese).
徐柳笛.四川建材,2020,46(10),74.
12 Dilrukshi R A N,Watanabe J,Kawasaki S. Materials Transactions,2015,9(56),1565.
13 Wu L Y,Miao L C,Sun X H,et al. Chinese Journal of Geotechnical Engineering,2020,45(4),714(in Chinese).
吴林玉,缪林昌,孙潇昊,等.岩土工程学报, 2020,45(4),714.
14 Qabany A A,Soga K,Santamarina C. Journal of Geotechnical and Geoen-vironmental Engineering,2012,138(8),992.
15 Zhang J W,Wang X J,Li B B,et al. Chinese Journal of Civil and Environmental Engineering,2021,43(2),201(in Chinese).
张建伟,王小锯,李贝贝,等.土木与环境工程学报,2021,43(2),201.
16 Yin L Y,Tang C S,Xie Y H,et al. Rock and Soil Mechanics,2019,40(7),2525(in Chinese).
尹黎阳,唐朝生,谢约翰,等.岩土力学, 2019,40(7),2525.
17 Huang Y,Luo X G,Du F. Journal of Southwest University of Science and Technology, 2009,24(3),87(in Chinese).
黄琰,罗学刚,杜菲.西南科技大学学报, 2009,24(3),87.
18 Muynck W D,Verbeken K, de Belie N D, et al. Applied Microbiology and Biotechnology, 2013,97(3),1345.
19 Zhang Y,Guo H X,Cheng X H . Material Research Innovations,2014,18(2),79.
20 Neupane D,Yasuhara H,Kinoshita N,et al. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(12),2201.
21 Wang J J. Study on dynamic characteristics of improved silt subgrade. Master's Thesis, Henan University, China, 2019(in Chinese).
王晶晶.改良粉砂土路基动力特性研究.硕士学位论文,河南大学,2019.
[1] 李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
[2] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[3] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[4] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[5] 谭益成, 刘志超, 王发洲. -10 ℃条件下掺氯化镁溶液的γ-C2S碳化性能研究[J]. 材料导报, 2023, 37(1): 22010270-7.
[6] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[7] 商怀帅, 柴鑫. 往复荷载下锈蚀钢筋与混凝土粘结性能的试验研究[J]. 材料导报, 2023, 37(1): 21030106-6.
[8] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[9] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[10] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[11] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[12] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[13] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[14] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[15] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed