Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 376-380    
  金属与金属基复合材料 |
空心微珠增强铝基复合材料的制备工艺及性能研究进展
燕飞, 李春林, 吕辉
南京电子技术研究所,南京210039
Progress in Fabrication and Properties of Hollow Microspheres Reinforced Aluminum Matrix Composites
YAN Fei, LI Chunlin, LYU Hui
Nanjing Research Institute of Electronics Technology, Nanjing 210039, China
下载:  全 文 ( PDF ) ( 4865KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属基复合增强材料相关技术近年来发展迅速,颗粒增强铝基复合材料不仅保留了铝合金良好的导电导热性、低密度、高塑性等特性,同时提高了强度和耐磨性,得到广泛关注。其中,空心微珠增强铝基复合材料的阻尼性能、电磁屏蔽特性得到明显改善,在机械制造、宇航、电子、武器、汽车、建筑、体育等行业具有广阔的应用前景。空心微珠作为填充材料加入轻金属及其合金中,制备出颗粒增强金属基复合材料,在降低基体密度的同时提高基体的刚度、强度,改善材料的尺寸稳定性和耐热性,而且还能降低材料的成本。本文综述了近年来空心微珠增强铝基复合材料的研究进展,介绍了制备工艺、热物理性能、电磁屏蔽性能等内容,并且展望了空心微珠增强铝基复合材料技术的应用前景及发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
燕飞
李春林
吕辉
关键词:  空心微珠  铝基复合材料  制备工艺  物理性能  电磁性能    
Abstract: The technology of metal matrix composites is developing rapidly recently. Particle-reinforced aluminum matrix composites retain the properties of conductive thermal conductivity, low density and high plasticity. The strength and wear resistance of aluminum alloy composites are also improved. The damping and electromagnetic shielding properties of hollow bead reinforced aluminum matrix composites are greatly improved. Hollow bead reinforced aluminum matrix composites have broad application prospects in mechanical manufacturing, aerospace, electronics, weapons, automobile, construction, sports and other industries. Hollow microspheres were added into light metals to prepare particle reinforced metal matrix composites. Hollow microspheres can reduce the density of the matrix, improve the stiffness and strength of the matrix, and improve the dimensional stability and heat resistance of the material. In this paper, the research progress of hollow bead reinforced aluminum matrix composites in recent years is reviewed, including the preparation technology, thermophysical properties, electromagnetic shielding properties. The application prospect and development trend of hollow bead reinforced aluminum matrix composites are prospected.
Key words:  hollow microspheres    aluminum matrix composite    fabrication process    physical property    electromagnetic performance
                    发布日期:  2021-12-09
ZTFLH:  TB331  
通讯作者:  lvhui5@cetc.com.cn   
作者简介:  燕飞,1974年生,高级工程师,从事雷达结构工艺总体研究、生产管理等。
吕辉,1991年生,工程师,研究方向为精密加工、材料成型、特种加工等。
引用本文:    
燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
YAN Fei, LI Chunlin, LYU Hui. Progress in Fabrication and Properties of Hollow Microspheres Reinforced Aluminum Matrix Composites. Materials Reports, 2021, 35(z2): 376-380.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/376
1 赵玉涛. 原位合成铝基复合材料, 科学出版社, 2016.
2 郑开宏. 广东省金属基复合材料产业技术路线图, 华南理工大学出版社, 2018.
3 Gibson L. Annual Review of Materials Science, 2000, 30,191.
4 Dorian K Balch John G O'Dwyer. Materials Science and Engineering,2005,391,408.
5 Wang H, Zhou X Y, Long B, et al. Materials Science and Engineering A, 2013, 582,316.
6 Uju W A, Oguocha I N A. Materials & Design, 2012, 33, 503.
7 林颖菲. 玻璃空心微珠/Al多孔复合材料微观组织与压缩特性研究. 博士学位论文,哈尔滨工业大学, 2017.
8 窦作勇. 空心球/Al多孔材料阻尼与冲击吸能行为及其机理研究. 博士学位论文,哈尔滨工业大学, 2008.
9 杨金龙, 席小庆, 黄勇. 陶瓷微珠. 清华大学出版社, 2017.
10 罗燕, 陈敏. 轻工科技, 2012, 3(3),24.
11 Rohatgi P K, Guo R Q, Iksan H, et al. Materials Science and Enginee-ring A, 1998, 244(1), 22.
12 Zhang X F, Wang, D J, Xie G. Acta Metallurgica Sinica, 2002, 15(5), 465.
13 Guo R Q, Rohatgi P K, Ray S. Transactions of the American Foundrymen's Society, 1996, 104, 1097.
14 Guo R Q, Venugopalan D, Rohatgi P K. Materials Science and Enginee-ring A, 1998, 241, 184.
15 吴林丽, 刘宜汉, 孙淑萍, 等. 东北大学学报, 2003, 24(6), 583.
16 蒋爱蓉, 孙玉福, 杨久俊, 等. 铸造, 2008, 57(7), 671.
17 Mondal D P, Das S, Ramakrishnan N, et al. Composites Part A: Applied Science and Manufacturing, 2009, 40(3),279.
18 王英杰, 龙文元, 罗燕. 材料热处理技术, 2008, 37(6), 92.
19 龙文元, 夏春, 张丽攀, 等.铸造技术, 2007, 28(3),393.
20 Rajan T P D, Pai B C, Pillai R M. Composites Science and Technology, 2007, 67, 3369.
21 Vendra L J, Rabiei A. Materials Science and Engineering A, 2007, 465(1-2), 59.
22 Castro G, Nutt S R. Materials Science and Engineering A, 2012, 535, 274.
23 中国材料研究学会. 2006年材料学与工程新进展. 化学工业出版社, 2007.
24 Lin Y F, Zhang Q, Zhang F Y, et al. Materials Science and Engineering A, 2017, 696, 236.
25 Palmer R A, Gao K, Doan T M, et al. Materials Science and Engineering A, 2007, 464(1-2),85.
26 Orbulov I N. Materials Science and Engineering A, 2013, 583,11.
27 Guo R Q, Pohatgi P K, Nath D. Journal of Materials Science, 1997, 32(15),3971.
28 张雄飞, 王达健, 谢刚, 等. 中国有色金属学报, 2001, 11(2), 68.
29 Neville B P, Rabiei A. Materials & Design, 2008, 29(2),388.
30 长谷川正义.喷射弥散强化合金,北京:国防工业出版社,1986.
31 黄晓莉, 武高辉, 窦作勇.功能材料,2005(4),69.
32 Dou Z Y, Wu G H, Jiang L T, et al. Transactions of Nonferrous Metals Society of China, 2006, 16(3),1634.
33 李月英, 韦东远, 曹占义, 等. 汽车工艺与材料, 2000(2), 25.
34 汪正兴, 翁巍, 马乃恒, 等.热加工工艺, 2009,38(10),128.
35 GuoR Q,RohatgiP K,Ray S. Trans. Am. Foundrymen's Soc., 1996,104,1097.
36 蒋爱蓉, 孙玉福, 杨久俊,等.铸造, 2008,57(7),671.
37 Pohatgi P K, Gupta N, Alaraj Simon. Journal of Composite Materials, 2006, 40(13), 1163.
38 Dou Z Y,Gao H Y,et al. Composites Part A,2007,38,186.
[1] 刘哲, 刘勇, 高广志, 李奇贵, 包阳阳, 马凤森. Plackett-Burman设计结合响应面法优化可溶性微针的制备工艺[J]. 材料导报, 2021, 35(z2): 593-599.
[2] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[3] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[4] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[5] 骆吉源, 肖国庆, 丁冬海, 种小川, 任金翠. 二硼化锆粉体合成研究现状与展望[J]. 材料导报, 2021, 35(21): 21159-21168.
[6] 孙茗, 庄景巍, 邓海亮, 陈子洋, 斯松华, 张瑞敏. 高温抗蠕变铝合金及铝基复合材料研究进展[J]. 材料导报, 2021, 35(11): 11137-11144.
[7] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[8] 周长壮, 马琳, 崔庆贺, 梁金第. 颗粒增强铝基复合材料TLP连接综述与展望[J]. 材料导报, 2020, 34(Z1): 351-355.
[9] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[10] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[11] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[12] 陈运灿, 闫二虎, 狄翀博, 王金华, 黄浩然, 王豪, 刘威, 徐芬, 孙立贤. 5B族(Nb,V和Ta)合金渗氢膜的研究进展[J]. 材料导报, 2020, 34(21): 21001-21011.
[13] 李萌, 杨成博, 张静, 郑开宏. 轻质高熵合金的研究现状[J]. 材料导报, 2020, 34(21): 21125-21134.
[14] 陈文华, 黄志义. 集料和纤维掺量对LTCC力学性能和微观结构的影响[J]. 材料导报, 2020, 34(18): 18049-18055.
[15] 李凯, 高文明, 杜莹, 李箭. 直接CH4固体氧化物燃料电池金属支撑体研究现状与发展[J]. 材料导报, 2020, 34(17): 17149-17154.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed