Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 116-120    
  无机非金属及其复合材料 |
SiO2-H2O纳米悬浮液的导热及其机理分析
刘刚, 贾莉斯, 陈颖, 汪嘉城, 莫松平
广东工业大学材料与能源学院,广州 510006
Analysis on Thermal Conductivity Mechanism of SiO2-H2O Nanofluids
LIU Gang, JIA Lisi, CHEN Ying, WANG Jiacheng, MO Songping
School of Materials and Energy,Guangdong University of Technology, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 3215KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用“两步法”分别将50 nm、500 nm粒径的SiO2纳米颗粒加入去离子水中制备纳米悬浮液,采用稳定性分析仪测试SiO2-H2O纳米悬浮液的分散稳定性。结果显示:SiO2-H2O纳米悬浮液的不稳定性指数低于0.37,说明SiO2纳米颗粒在去离子水中分散稳定。在此基础上,采用Hotdisk导热系数仪分别测试SiO2-H2O纳米悬浮液在25 ℃、-20 ℃下的导热系数,就颗粒浓度和粒径的影响进行研究。结果显示:SiO2-H2O纳米悬浮液在25 ℃下的液相导热系数随颗粒浓度的增大、粒径的减小而上升;在-20 ℃下由于冰的导热系数比SiO2纳米颗粒大,SiO2-H2O纳米悬浮液的固相导热系数转而下降。采用Maxwell、Bruggeman、Yu and Choi和Xie提出的导热系数模型计算SiO2-H2O纳米悬浮液的液相和固相导热系数,与测试结果对比发现:导热系数模型能相对较好地预测SiO2-H2O纳米悬浮液的固相导热系数,但对悬浮液液相导热系数的预测存在很大偏差。分析认为,在纳米颗粒自身导热性能和其微观布朗运动对SiO2-H2O纳米悬浮液的导热强化中,纳米颗粒的微观布朗运动起到主要作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘刚
贾莉斯
陈颖
汪嘉城
莫松平
关键词:  水基纳米悬浮液  SiO2纳米颗粒  导热系数  颗粒浓度  颗粒粒径    
Abstract: SiO2 nanoparticles with different sizes (50 nm and 500 nm) were added into the deionized water by a “two-step” method to prepare water-based nanofluid, and the dispersion stability of SiO2-H2O nanofluids was evaluated using a photometric dispersion analyser. The results showed that the instability index values of SiO2-H2O nanofluids were lower than 0.37, suggesting that SiO2 nanoparticles were stably dispersed in the deionized water. The thermal conductivities of SiO2-H2O nanofluids at 25 ℃ and -20 ℃ were measured by a hot-disk method, and the effect of nanoparticle concentration and size was investigated detailedly. The results showed that as the concentration of SiO2 nanoparticles increased or the size of SiO2 nanoparticle decreased, the thermal conductivity of SiO2-H2O nanofluids at 25 ℃ increased, whereas that of SiO2-H2O nano-fluids at -20 ℃ decreased due to the lower thermal conductivity of SiO2 nanoparticles compared with the ice. The Maxwell, Bruggeman, Yu and Choi, and Xie models were adopted to calculate the thermal conductivities of SiO2-H2O nanofluids at 25 ℃ and -20 ℃. The calculated and mea-sured values were compared to further investigate the mechanism of thermal conductivity of SiO2-H2O nanofluids. The results showed that these models could predict the thermal conductivities of SiO2-H2O nanofluids at -20 ℃, whereas the deviations between theoretical and experimental values of thermal conductivity at 25 ℃ were distinct. It suggested that the thermal conductivity of SiO2-H2O nanofluids was affected by the intrinsic thermal conductivity and Brownian motion of nanoparticles, and the Brownian motion of nanoparticles played a dominant role in particular.
Key words:  water-based nanofluid    SiO2 nanoparticles    thermal conductivity    particle concentration    particle size
                    发布日期:  2021-07-16
ZTFLH:  TK02  
基金资助: 国家自然科学基金(51876045)
通讯作者:  jialisi@gdut.edu.cn   
作者简介:  刘刚,广东工业大学研究生。 2013年9月至2017年6月,在北京工业大学珠海学院获得工学学士学位。主要研究方向是颗粒悬浮液的热物性。贾莉斯,2014年毕业于重庆大学,获得工学博士学位。现任广东工业大学材料与能源学院副教授。研究方向主要为强化传热技术,在国内外期刊发表学术论文30余篇。
引用本文:    
刘刚, 贾莉斯, 陈颖, 汪嘉城, 莫松平. SiO2-H2O纳米悬浮液的导热及其机理分析[J]. 材料导报, 2021, 35(Z1): 116-120.
LIU Gang, JIA Lisi, CHEN Ying, WANG Jiacheng, MO Songping. Analysis on Thermal Conductivity Mechanism of SiO2-H2O Nanofluids. Materials Reports, 2021, 35(Z1): 116-120.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/116
1 Xian H W, Sidik N A C, Najafi G. Journal of Thermal Analysis and Ca-lorimetry, 2019, 135, 981.
2 Sidik N A C, Mohd Yazid M N A W, Mamat R. Renewable and Sustai-nable Energy Reviews, 2017, 75, 137.
3 Islam M R, Shabani B, Rosengarten G, et al. Renewable and Sustainable Energy Reviews, 2015, 48, 523.
4 Tawfik M M. Renewable and Sustainable Energy Reviews, 2017, 75, 1239.
5 Yoo D H, Hong K S, Yang H S. Thermachimica Acta, 2007, 455, 66.
6 Duangthongsuk W, Wongwises S. Experimental Thermal and Fluid Science, 2009, 33, 706.
7 Angayarkanni S A, Philip J. Journal of Nanofluids, 2014, 3, 17.
8 Hwang Y J, Ahn Y C, Shin H S, et al. Current Applied Physics, 2006, 6, 1068.
9 Chon C H, Kihm K D, Lee S P, et al. Applied Physics Letters, 2005, 87, 153107.
10 Buonomo B, Manca O, Marinelli L, et al. Applied Thermal Engineering, 2015, 91, 181.
11 Maxwell J C. A treatise on electricity and magnetism, Oxford University Press, UK, 1892.
12 Hamilton R L, Crosser O K. I & EC Fundamentals, 1962, 1, 187.
13 Bruggeman D A G. Annalen Der Physik, 1935, 24, 636.
14 Yu W, Choi S U S. Journal of Nanoparticle Research, 2003, 5, 167.
15 Xie X L, Mai Y W, Zhou X P. Materials Science and Engineering: R: Reports, 2005, 49, 89.
16 Abareshi M, Goharshadi E K. Journal of Magnetism and Magnetic Mate-rials, 2010, 322, 3895.
17 Karimi A, Sadatlu M A A, Saberi B. Advanced Powder Technology, 2015, 26, 1529.
18 Kleinstreuer C, Feng Y. Nanoscale Research Letters, 2011, 6, 1.
19 Özerinç S, Kakaç S, Yazıcıoɡˇlu A G. Microfluidics and Nanofluidics, 2010, 8, 145.
20 Li F C, Yang J C, Zhou W W, et al. Thermochimica Acta, 2013, 556, 47.
21 Keblinski P, Phillpot S R, Choi S U S. International Journal of Heat and Mass Transfer, 2014, 45, 855.
22 Evans W, Fish J, Keblinsk P. Applied Physics Letters, 2009, 88, 093116.
23 Vajjha R S, Das D K. International Journal of Heat and Mass Transfer, 2010, 52, 4675.
24 Murshed S M S, Leong K C, Yang C. Applied Thermal Engineering, 2011, 29, 2477.
25 Koo J, Kleinstreuer C. Journal of Nanoparticle Research, 2014, 6, 577.
26 Chandrsekar M, Suresh S, Srinivasan A, et al. Journal of Nanoscience and Nanotechnology, 2015, 36, 533.
[1] 陈玉星, 王天浩, 黎晓杰, 付海, 何力, 龚维. LDH-热膨胀微胶囊的合成及发泡EVA复合材料的综合性能[J]. 材料导报, 2021, 35(4): 4194-4199.
[2] 赵立晓, 王鹏刚, 王兰芹, 赵铁军, 光文涛. 混凝土内部温湿度响应参数分析:水分扩散系数与导热系数[J]. 材料导报, 2021, 35(12): 12075-12080.
[3] 张亚娟, 李亚楠, 宋晓艳, 王海滨, 侯超, 聂祚仁. 特殊粒径分布球形Ni粉的制备及SLM工艺性能研究[J]. 材料导报, 2020, 34(6): 6114-6119.
[4] 郭建业, 赵英民, 吴朝军, 李文静, 杨洁颖, 张丽娟, 苏力军. 温度对石英纤维毡隔热性能的影响[J]. 材料导报, 2020, 34(24): 24019-24022.
[5] 仇中柱, 李晟南, 魏丽东, 秦承芳, 姚远, 姜未汀, 郑莆燕, 张涛. 相变微胶囊悬浮液中颗粒润湿性对导热系数的影响[J]. 材料导报, 2019, 33(Z2): 623-626.
[6] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[7] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[8] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[9] 王博, 朱孝钦, 胡劲, 常静华, 陈洋, 史杰. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819.
[10] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[11] 王同生, 李亚伟, 桑绍柏, 徐义彪, 王庆虎. 添加热氧化鳞片石墨对高炉炭砖显微结构和性能的影响[J]. 材料导报, 2019, 33(11): 1831-1835.
[12] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[13] 刘自力, 林嘉伟, 罗扬, 任丽, 左建良. 表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征[J]. 材料导报, 2018, 32(24): 4381-4385.
[14] 张新铭, 陈丹阳, 王花. 基于二维Voronoi模型的多孔泡沫金属导热性能模拟研究*[J]. 《材料导报》期刊社, 2017, 31(21): 135-138.
[15] 赵思勰,晏华,汪宏涛,李云涛,余荣升,杨健健. 月桂酸/膨胀珍珠岩复合相变材料的制备与热性能研究*[J]. 材料导报编辑部, 2017, 31(10): 107-111.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed