Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 33-41    
  无机非金属及其复合材料 |
Cu2O/g-C3N4异质结光催化材料的研究进展
郑健飞1, 朱思龙1, 聂龙辉1,2,
1 湖北工业大学绿色轻工材料湖北省重点实验室,武汉 430068
2 绿色轻质材料与加工湖北工业大学协同创新中心,武汉 430068
Progress of Cu2O/g-C3N4 Heterojunction Photocatalytic Materials
ZHENG Jianfei1, ZHU Silong1, NIE Longhui1,2
1 Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
2 Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
下载:  全 文 ( PDF ) ( 6349KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光催化是一种环境友好型技术,能够有效解决环境污染和能源短缺问题,具有广阔的应用前景。其基本原理是半导体催化剂在光照的条件下产生具有强氧化还原能力的活性物种,这些活性物种可用来净化污染物、制备氢气、合成化学品等。n型半导体类石墨相氮化碳(g-C3N4)具有结构稳定、多孔、可见光响应等特点,在光催化领域有广泛的应用。p型半导体氧化亚铜(Cu2O)具有导电性高、晶面活性高等特点,并且其能带位置与间隙能够满足光催化水解产氢的要求。然而,受限于材料自身物理化学性质,纯g-C3N4或Cu2O都难以获得较高的催化性能。将Cu2O和g-C3N4复合形成异质结,能有效提高光生载流子分离效率和可见光利用率,从而提高其光催化性能。本文对Cu2O/g-C3N4异质结光催化材料研究进行梳理,总结了异质结形成机制和合成策略,概括了Cu2O/g-C3N4异质结催化材料在光催化降解污染物、抗菌、产氢、CO2还原、有机合成等领域的应用,并对未来研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑健飞
朱思龙
聂龙辉
关键词:  氧化亚铜/类石墨相氮化碳  异质结  光催化性能    
Abstract: Photocatalysis is an environmentally-friendly technology that can effectively solve the problems of environmental pollution and energy shor-tage, and has wide application prospects. Its basic principle is that semiconductor catalysts are stimulated under light irradiation to produce many active species with strong redox ability, which can be used for pollutant degradation, hydrogen production, and chemical synthesis. The n-type semiconductor graphite-like phase carbon nitride (g-C3N4) has the characteristics of stable and porous structure, and good visible-light response. It is widely used in the field of photocatalysis. The p-type semiconductor cuprous oxide (Cu2O) has the characteristics of high conductivity and high crystal surface activity, and its energy band position and gap can meet the requirements of photocatalytic hydrolysis to produce hydrogen. However, due to the limitation of the material's own physicochemical properties, the pure g-C3N4 or Cu2O does not exhibit high catalytic performance. The combination of Cu2O and g-C3N4 to form a heterojunction can effectively improve the separation efficiency of photogenerated car-riers and the utilization efficiency of visible light, thereby improving the photocatalytic performance. In this review, the research on Cu2O/g-C3N4 heterojunction photocatalytic materials is summarized, and the formation mechanism and synthesis strategies of heterojunction are reviewed, and the applications of Cu2O/g-C3N4 heterojunction for photocatalytic degradation of pollutants, antisepsis, hydrogen production, CO2 reduction, and organic synthesis are discussed, and finally future research directions are prospected.
Key words:  copper(I) oxide/graphitic carbon nitride    heterojunction    photocatalytic performance
                    发布日期:  2021-07-16
ZTFLH:  O643  
基金资助: 国家自然科学基金(51572074);绿色轻工材料湖北省重点实验室开放课题(201907B09;201710A12)
通讯作者:  nielonghui@mail.hbut.edu.cn   
作者简介:  郑健飞,2019年6月毕业于广东工业大学,获得工学学士学位。现为湖北工业大学材料与化学工程专业硕士研究生,在聂龙辉教授的指导下进行研究。目前主要研究领域为光催化降解有机污染物。聂龙辉,湖北工业大学材料与化学工程学院教授、硕士研究生导师。1998年6月本科毕业于南昌大学生命科学与食品工程学院,2007年10月在大连理工大学化工学院应化专业取得博士学位,2012—2014年到武汉理工大学材料复合新技术国家重点实验室进行博士后研究工作,2015—2016年在美国堪萨斯大学作访问学者。目前主要从事半导体光催化、室内空气净化等研究工作。先后公开发表研究论文40余篇,包括: Environmental Science & Technology, Scientific Reports, Materials Letters, Catalysis & Science Technology, RSC Advances, Journal of Molecular Catalysis A: Chemistry, Catalysis Communications等。
引用本文:    
郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
ZHENG Jianfei, ZHU Silong, NIE Longhui. Progress of Cu2O/g-C3N4 Heterojunction Photocatalytic Materials. Materials Reports, 2021, 35(Z1): 33-41.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/33
1 Anandan S, Wu J J, Bahnemann D, et al.Colloids and Surfaces A: Phy-sicochemical and Engineering Aspects, 2017, 527, 34.
2 Deng J Y, Zhu S L, Zheng J F, et al. Journal of Colloid and Interface Science, 2020, 569, 320.
3 邵啸, 尹啸红, 杨晓晓, 等. 精细化工, 2017, 34(1), 74.
4 Thomas A, Fischer A, Goettmann F,et al. Journal of Materials Chemistry, 2008, 18(41), 4893.
5 Inagaki M, Tsumura T, Kinumoto T,et al. Carbon, 2019, 141, 580.
6 Zuluaga S, Liu L H, Shafiq N,et al. Physical Chemistry Chemical Phy-sics, 2015, 17(2), 957.
7 Prasad C, Tang H, Liu Q Q,et al. International Journal of Hydrogen Energy, 2020, 45(1), 337.
8 Muthukumaran M, Prasath P V, Kulandaivelu R,et al. Journal of Mate-rials Science: Materials in Electronics, 2019, 31(3), 2257.
9 Yan S C, Li Z S, Zou Z G.Langmuir, 2010, 26(6), 3894.
10 Yu J G, Wang S H, Low J X,et al. Physical Chemistry Chemical Physics, 2013, 15(39), 16883.
11 Koutavarapu R, Babu B, Reddy C V,et al. Journal of Materials Science, 2020, 55(3), 1170.
12 Karthikeyan S, Kumar S, Durndell L J,et al. ChemCatChem, 2018, 10(16), 3554.
13 Zhang X X, Song J M, Jiao J, et al. Solid State Sciences, 2010, 12(7), 1215.
14 Ma L L, Li J L, Sun H Z, et al. Materials Research Bulletin, 2010, 45(8), 961.
15 Zhang Y, Deng B, Zhang T R,et al. Journal of Physical Chemistry C, 2010, 114(11), 5073.
16 Abdellatif H R S, Zhang G, Wang X T,et al. Chemical Engineering Journal, 2019, 370, 875.
17 Babu S G, Vinoth R, Narayana P S,et al. APL Materials, 2015, 3(10), 1.
18 Bao Y C, Chen K Z.Molecular Catalysis, 2017, 432, 187.
19 Chen J, Shen S H, Guo P H,et al. Applied Catalysis B: Environmental, 2014, 152, 335.
20 Tian Q, Shen X F, Wang Z J,et al. Journal of Nanoscience and Nanotechnology, 2018, 18(11), 7355.
21 Tian Y L, Chang B B, Fu J,et al. Journal of Solid State Chemistry, 2014, 212, 1.
22 梅邱峰, 张飞燕, 王宁, 等. 无机化学学报, 2019, 35(8), 1321.
23 Xu Q L, Zhang L Y, Yu J G,et al. Materials Today, 2018, 21(10), 1042.
24 Zuo S X, Chen Y, Liu W J,et al. Ceramics International, 2017, 43(3), 3324.
25 Zhang P Y, Wang T T, Zeng H P.Applied Surface Science, 2017, 391, 404.
26 Yang J H, Wu X T, Li X F,et al. Applied Physics A, 2011, 105(1), 61.
27 Bai X J, Li J, Cao C B,et al. Materials Letters, 2011, 65(7), 1101.
28 Bai X J, Li J, Cao C B.Applied Surface Science, 2010, 256(8), 2327.
29 Ong W J, Tan L L, Ng Y H,et al. Chemical Reviews, 2016, 116(12), 7159.
30 Liu j H, Zhang T K, Wang Z C,et al. Journal of Materials Chemistry, 2011, 21(38), 14398.
31 Hong Y Z, Liu E L, Shi J Y,et al. International Journal of Hydrogen Energy, 2019, 44(14), 7194.
32 Li Y G, Zhang J, Wang Q S,et al. Journal of Physical Chemistry B, 2010, 114(29), 9429.
33 Xu J, Zhang L W, Shi R,et al. Journal of Materials Chemistry A: Mate-rials for Energy and Sustainability, 2013, 1(46), 14766.
34 Hu C, Chu Y C, Lin Y R,et al. Polymers, 2019, 11(1), 1.
35 Qian Q Z, Kong D S, Zhao S Z,et al. Optics & Laser Technology, 2019, 111, 597.
36 Meng X Y, Tian G H, Chen Y J,et al. RSC Advances, 2012, 2(7), 2875.
37 Li Z F, Soroka I L, Min F,et al. Dalton Transactions, 2018, 47(45), 16139.
38 Xi Q Y, Liu L, Gao G, Yang W,et al. Journal of the Electrochemical Society, 2016, 163(7), D332.
39 Ji R, Sun W D, Chu Y.ChemPhysChem, 2013, 14(17), 3971.
40 Dodoo-Arhin D, Leoni M, Scardi P,et al. Materials Chemistry and Phy-sics, 2010, 122(2-3), 602.
41 侯可禹. 片状g-C3N4及特殊形貌Cu2O基复合材料制备及电化学研究. 硕士学位论文,福州大学, 2015.
42 郭婧, 戴友芝, 刘林, 等. 广东化工, 2019, 46(16), 85.
43 廖伟, 徐海明, 左诗语, 等. 化工环保, 2018, 38(5), 552.
44 Surikanti G R, Bajaj P, Sunkara M V.ACS Omega, 2019, 4(17), 17301.
45 Koiki B A, Orimolade B O, Peleyeju G M,et al. Solid State Sciences, 2019, 97, 1.
46 Min Z Y, Wang X P, Li Y P,et al. Materials Letters, 2017, 193, 18.
47 Zuo S Y, Xu H M, Liao W,et al. Applied Organometallic Chemistry, 2018, 32(9), 1.
48 Yan X R, Xu R P, Guo J K,et al. Materials Research Bulletin, 2017, 96, 18.
49 Liu H, Zhu X D, Han R,et al. New Journal of Chemistry, 2020, 44(5), 1795.
50 Nekouei F, Nekouei S, Pouzesh M,et al. Chemical Engineering Journal, 2020, 385, 1.
51 Kumar A, Kumar A, Sharma G,et al. Chemical Engineering Journal, 2018, 334, 462.
52 Meenakshisundaram I, Kalimuthu S, et al. Materials Research Bulletin, 2019, 112, 331.
53 Liu B K, Wu Y J, Zhang G T,et al. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 378, 1.
54 王亚军, 姜丽娟, 冯长根. 化学进展, 2013, 25(12), 1999.
55 Liu L, Qi Y H, Hu J S,et al. Materials Letters, 2015, 158, 278.
56 Lan H C, Tang Y L, Zhang X H,et al. Chemical Engineering Journal, 2018, 345, 138.
57 Ji C, Yin S N, Sun S S,et al. Applied Surface Science, 2018, 434, 1224.
58 Liu L, Qi Y H, Hu J S,et al. Applied Surface Science, 2015, 351, 1146.
59 Zhang S S, Yan J, Yang S Y,et al. Chinese Journal of Catalysis, 2017, 38(2), 365.
60 Sudrajat H.Materials Research Express, 2018, 5(6), 1.
61 Sun Z M, Fang W, Zhao L,et al. Environment International, 2019, 130, 1.
62 Chang P Y, Tseng I H. Journal of CO2 Utilization, 2018, 26, 511.
63 Sharma A S, Sharma V S, Kaur H. ACS Applied Nano Materials, 2019, 3(2), 1191.
[1] 胡绍争, 王菲, 李政, 马宏飞, 李萍. 新型全光谱响应W18O49/g-C3N4异质结催化剂的构建及光催化降解有机染料性能研究[J]. 材料导报, 2021, 35(8): 8011-8016.
[2] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[3] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[4] 刘畅, 丁博, 杨贤峰, 叶瑞雪, 季益龙, 代兵, 吕辉鸿. 新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究[J]. 材料导报, 2020, 34(Z2): 78-83.
[5] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[6] 黄国富, 刘坤, 王忠凯, 宋蓉蓉, 朱颖, 汤睿, 张寒冰, 童张法. SDBS诱导磁性花球状SDBS/BiOBr-MB的制备及其增强的可见光催化性能[J]. 材料导报, 2020, 34(22): 22024-22029.
[7] 李玉佩, 王晓静, 赵君, 胡秋月, 王利勇, 成永强. 零维/二维Bi2S3/g-C3N4异质结的原位构建及光催化性能[J]. 材料导报, 2020, 34(15): 15033-15038.
[8] 胡文宇, 王笑乙, 袁欢, 刘禹彤, 陈雨, 张秋平, 张嘉羲, 罗凯怡, 李靖, 徐明. Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究[J]. 材料导报, 2020, 34(10): 10018-10023.
[9] 周理想, 黄仕华, 吴锋民. 异质结太阳能电池的仿真模拟研究和界面态密度对效率的影响[J]. 材料导报, 2019, 33(Z2): 28-31.
[10] 刘畅, 张志宾, 王有群, 钟玮鸿, 刘云海. 基于g-C3N4异质结复合材料光催化降解污染物的研究进展[J]. 材料导报, 2019, 33(Z2): 104-112.
[11] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[12] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[13] 杨秀钰, 陈诺夫, 张航, 陶泉丽, 徐甲然, 陈梦, 陈吉堃. 对非晶硅薄膜进行快速磷扩散以获得本征薄层异质结[J]. 材料导报, 2019, 33(20): 3353-3357.
[14] 陈豪, 肖清泉, 谢泉, 王坤, 史娇娜. 近红外Mg2Si/Si异质结光电二极管的结构设计与仿真[J]. 材料导报, 2019, 33(20): 3358-3362.
[15] 刘俊莉, 邵建真, 李军奇, 刘辉, 谢乔. 新型ZnO/BiOI杂化纳米花的合成及可见光驱动抗菌活性[J]. 材料导报, 2019, 33(2): 205-210.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed