Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 15-20    
  无机非金属及其复合材料 |
电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究
仲光洪, 汪丽莉, 杨稳
上海工程技术大学数理与统计学院,上海 201600
First Principle of Surface Modification and Li Storage Capacity of Battery Anode Materials Ti3C2M2 MXene
ZHONG Guanghong , WANG Lili, YANG Wen
School of Mathematics, Mathematics and Statistics, Shanghai University of Engineering and Technology, Shanghai 201600, China
下载:  全 文 ( PDF ) ( 4707KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Ti3C2是一种具有较好Li存储能力的电池负极材料,表现为金属导电性,具有较好的循环使用率和低的迁移势垒等优点。本研究采用密度泛函理论(DFT),运用第一性原理计算了多种表面基团作表面修饰结构的电子性能。
本研究选取九种表面基团,分别是卤族F、Cl,氧族O、S、Se、Te,等相对分子质量OH、NH2、CH3。表面基团吸附设计了三种方法:Ti(2)上方吸附、C上方吸附、Ti(1)上方吸附,计算结果表明,同一种表面基团中的Ti(2)上方吸附具有更低的体系总能量E0,结构表现更加稳定。而在同一组中质量分数小的基团及原子数少的基团,电子性能越好,有更好的电子传输性能。最终对比表面基团F、O、OH的结合能,分别是-5.37 eV、-4.96 eV、-5.00 eV,F基团的结合能最低,表现为最好的结构稳定性,而Ti3C2O2具有最大的开路电压0.44 eV和最高的Li存储容量268.61 mA·h·g-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仲光洪
汪丽莉
杨稳
关键词:  第一性原理  Ti3C2 MXene材料  电子结构  电池负极材料    
Abstract: Ti3C2 is a kind of anode material with good storage performance, which is characterized by metal conductivity, good cycle utilization, low migration barrier and so on. In this paper, density functional theory (DFT) is used to calculate the electronic properties of various surface groups. Nine kinds of surface groups were selected and divided into three categories: one group of F, Cl halogen group, one group of O, S, Se, Te oxygen group , one group of relative molecular weight, etc. Three adsorption sites were designed for surface groups: adsorption above Ti(2), adsorption above C, adsorption above oxygen group The results show that the upper adsorption of the same surface group has lower system energy Ti(2) and the structure is more stable. In the same group, the group with small mass fraction and the group with small number of atoms have better electronic performance and better electron transport performance. The binding energy F, O, OH the surface groups was -5.37 eV, -4.96 eV, -5.00 eV, the F has lowest binding energy, which showed the best structural stability.And the Ti3C2O2 has a maximum open circuit voltage of 0.44 eV and a maximum Li storage capacity of 268.61 mA·h·g-1.
Key words:  first principles    Ti3C2 MXene materials    electronic structure    battery anode material
                    发布日期:  2021-07-16
ZTFLH:  O481  
通讯作者:  llwang@sues.edu.cn   
作者简介:  仲光洪,上海工程技术大学硕士在读,材料物理与化学专业,研究方向是半导体材料和电池负极材料。汪丽莉,上海工程技术大学讲师,硕士研究生导师。2009.06毕业于武汉大学凝聚态物理专业获博士学位。2012.10—2013.10美国匹兹堡大学访问学者。2009.07—至今,上海工程技术大学数理与统计学院讲师。2016—2018年国家自然科学基金青年项目(主持),纳米复合热电材料的热电性能机理研究。2011年获上海工程技术大学大学生创新论坛一等奖(指导教师),2017年度获上海工程技术大学青年五四奖章,2019年获上海工程技术大学青年教师教学竞赛三等奖。
引用本文:    
仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
ZHONG Guanghong , WANG Lili, YANG Wen. First Principle of Surface Modification and Li Storage Capacity of Battery Anode Materials Ti3C2M2 MXene. Materials Reports, 2021, 35(Z1): 15-20.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/15
1 Barsoum, Prog M W, Journal of Solid State Chemistry, 2000, 28, 201.
2 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23, 4248.
3 Naguib M, Mashtalir O, Carle J, et al. American Chemical Society Nano, 2012, 6, 1322.
4 Tang Q, Zhou Z, Shen P W, et al. Journal of the American Chemical Society, 2012, 134, 16909.
5 Ma R Z, Sasaki T, Advanced Materials. 2010, 22, 5082.
6 Calandra M, Physical Review B: Condensed Matter and Materials Physics, 2013, 88, 245428.
7 Zhou K G, Mao N N, Wang H X, et al. Angewandte Chemie International Edition, 2011, 50, 10839.
8 Cai Y Q, Lan J H, Zhang G, et al. Physical Review B: Condensed Matter and Materials Physics, 2014, 89, 035438.
9 Mashtalir O, Naguib M, Dyatkin B, et al. Materials Chemistry and Phy-sics, 2013,139,147.
10 Shi C, Beidaghi M, Naguib M, et al. Physical Review Letters, 2014, 29, 1211.
11 Barsoum M W, Prog, Journal of Solid State Chemistry, 2000, 28, 201.
12 Zhou Y C, Wang X H, Sun Z M, et al. Journal of Materials Chemistry, 2001, 11, 2335.
13 Luo J M, Tao X Y, Zhang J, et al. American Chemical Society Nano, 2016, 10, 2491.
14 Enyashin A N, Ivanovskii A L,Computational and Theoretical Chemistry, 2012, 989, 27.
15 Luo J M, Zhang W K, Yuan H D, et al. American Chemical Society Nano, 2017, 11, 2459.
16 Ling Z, Ren C E, Zhao M Q, et al. Aproceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16676.
17 Lukatskaya M R, Mashtalir O, Ren C E, et al. Science, 2013, 341, 1502.
18 Shi H D, Dong Y F, Zheng S H, et al. Nanoscale Advances, 2020, 10, 1039.
19 Shi C Y, Beidaghi Majid, Naguib Michael,et al. Physical Review Letters, 2014, 112, 125501.
20 Elisa A M, Olga U, Riki M M,et al. Journal of Applied Polymer Science, 2017, 10, 1002.
21 Kresse G,Physical Review B: Condensed Matter and Materials Physics, 1996, 54, 11169.
22 BlochlP E. Physical Review B: Condensed Matter and Materials Physics, 1994, 50, 17953.
23 Kresse G, Hafner J,Physical Review B: Condensed Matter and Materials Physics, 1993, 47, 558.
24 Er D Q, Li J W, Naguib Michael, et al. ACS Applied Materials & Interfaces, 2014, 6, 11173.
25 Li D, Chen X, Xiang P, et al. Applied Surface Science, 2019, 501, 144221.
[1] 宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
[2] 屈华, 徐巧至, 刘伟东, 齐健学, 娄琦, 蒋新宇. Al-Cu-Mg-Ag合金Ω相价电子结构与沉淀硬化能力的关系[J]. 材料导报, 2021, 35(12): 12110-12113.
[3] 王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
[4] 杜颖妍, 陈婷, 贾倩, 李越, 毋志民. 新型稀磁半导体Mn掺LiBeP的磁电性质调控[J]. 材料导报, 2021, 35(10): 10013-10016.
[5] 方文玉, 张鹏程, 赵军. 羟基修饰单层砷烯及锑烯的电子结构与光学性质[J]. 材料导报, 2021, 35(10): 10017-10022.
[6] 龙涛, 杨新国, 李丝雨, 王影, 毛凤余. 二元溶剂体系对含仲胺基团苝酰亚胺衍生物自组装与光电性能的影响[J]. 材料导报, 2021, 35(10): 10176-10183.
[7] 简单, 朱燮刚, 刘瑜, 宋海峰, 赖新春. U和UO2状态方程研究进展[J]. 材料导报, 2021, 35(1): 1082-1095.
[8] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[9] 查林. D3-C32X2(X=H, Cl)的电子结构、核磁共振及振动光谱理论研究[J]. 材料导报, 2020, 34(Z1): 103-106.
[10] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[11] 李鑫, 谢辉, 魏鑫, 张亚龙. Mg2Si1-xSnx合金热电性能的第一性原理计算预测[J]. 材料导报, 2020, 34(18): 18098-18103.
[12] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[13] 李飞, 林成. 余氏理论的内涵及发展展望[J]. 材料导报, 2020, 34(13): 13109-13113.
[14] 赵宇鹏, 贺勇, 张敏, 史俊杰. 非金属掺杂二维ZnS的磁性和光学性质的第一性原理研究[J]. 材料导报, 2020, 34(10): 10013-10017.
[15] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed