Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23080026-7    https://doi.org/10.11896/cldb.23080026
  无机非金属及其复合材料 |
强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究
汪伟1,2,*, 范志宏1,2,3, 赵家琦1,2, 杨海成1,2,3
1 中交四航工程研究院有限公司,广州 510230
2 水工构造物耐久性技术交通行业重点实验室,广州 510230
3 海洋基础设施长期性能交通运输行业野外观测研究基地,广东 湛江 524000
Study on Microstructure and Resistance to Chloride Ingress of Cement Paste Under Intense Ultraviolet Irradiation
WANG Wei1,2,*, FAN Zhihong1,2,3, ZHAO Jiaqi1,2, YANG Haicheng1,2,3
1 CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, China
2 Key Laboratory of Harbor & Marine Structure Durability Technology of Transport Industry, Guangzhou 510230, China
3 Observation and Research Base of Transport Industry of Long-term Performances of Marine Infrastructure, Zhanjiang 524000, Guangdong, China
下载:  全 文 ( PDF ) ( 7301KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以南海为代表的远海海洋服役环境恶劣,具有高温、高湿、高盐、高辐照的环境特点。现有研究表明辐照会改变水泥浆体的组成与结构,但对水泥浆体耐久性的影响常被忽略。为阐明强辐照作用对水泥浆体微结构与抗氯离子侵蚀性能的影响,本研究利用紫外线耐气候试验箱进行加速模拟实验,并与水养、室内环境进行对比分析,表征了不同条件下水泥的浆体吸水率、碳化深度、物相组成、孔结构与氯离子固化能力,并在紫外辐照-干湿循环耦合作用条件下进行了氯离子侵蚀实验。结果表明,辐照时间由500 h增加至1 500 h,浆体的最可几孔径由135.8 nm增大至283.8 nm,孔隙率由25.0%增大至29.5%,孔结构劣化,氯离子扩散通道增加。同时,强辐照造成AFm、水化硅酸钙凝胶(C-S-H)等水化产物碳化分解,导致水泥浆体的氯离子固化量由51.9 mg/g下降至23.9 mg/g。此外,长期辐照耦合干湿循环作用产生的温度应力会增大浆体开裂的风险,裂纹会显著降低浆体的抗氯离子侵蚀能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪伟
范志宏
赵家琦
杨海成
关键词:  辐照作用  干湿循环  微结构  氯离子固化能力  抗氯离子侵蚀    
Abstract: The service environment to concrete structures in far sea represented by the South China Sea is harsh, with the characteristics of high temperature, high humidity, high salt content and intense ultraviolet irradiation. Existing studies have shown that irradiation can change the composition and structure of cement paste, but the effects on the durability of cement paste is easy to ignore. In order to clarify the effects of irradiation on the microstructure and resistance to chloride attacks of cement paste, the accelerated simulation experiment was carried out by using ultraviolet climate chamber, and compared with water curing and room environment. The capillary water absorption, carbonation depth, phase composition, pore structure and chloride binding capacity of cement paste under different conditions were characterized, and the chloride ingress experiment was carried out under the coupling condition of dry-wet cycle and irradiation. The results show that with the irradiation time increases from 500 h to 1 500 h, the most probable pore diameter of the paste increases from 135.8 nm to 283.8 nm, the porosity increases from 25.0% to 29.5%, the pore structure deteriorates, and the chloride diffusion channel increases. At the same time, intense irradiation caused the carbonation decomposition of hydration products such as AFm and C-S-H, resulting in the chloride binding capacity of cement paste decreased from 51.9 mg/g to 23.9 mg/g. In addition, the temperature stress caused by long-term irradiation coupled with dry-wet cycles will increase the cracking risks of paste and the crack will significantly deteriorate the resistance to chloride attacks.
Key words:  irradiation effect    dry-wet cycle    microstructure    chloride binding capacity    chloride resistance
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TU528  
通讯作者:  *汪伟,2019年6月、2022年6月分别于安徽工业大学和华南理工大学获得工学学士学位和硕士学位。现任职于中交四航局工程研究院有限公司。主要研究领域为建筑材料耐久性、海工混凝土材料。1121879948@qq.com   
引用本文:    
汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
WANG Wei, FAN Zhihong, ZHAO Jiaqi, YANG Haicheng. Study on Microstructure and Resistance to Chloride Ingress of Cement Paste Under Intense Ultraviolet Irradiation. Materials Reports, 2024, 38(21): 23080026-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080026  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23080026
1 Li T F. Journal of Tropical Meteorology, 2003(3), 334(in Chinese).
李天富.热带气象学报, 2003(3), 334.
2 Cheng S K. Study on degradation mechanisms of cement-based materials under multiple-salts action in marine environment.Ph.D. Thesis, Wuhan University of Technology, China, 2019 (in Chinese).
程书凯. 海洋环境多盐作用下水泥基材料劣化机理研究. 博士学位论文, 武汉理工大学, 2019.
3 GB/T 31155, Classification of solar energy resources—Global radiation, Standards Press of China, China, 2014, pp. 2 (in Chinese).
GB/T 31155, 太阳能资源等级总辐射, 中国标准出版社, 2014, pp. 2.
4 Weerdt K D, Orsáková D, Geiker M R. Cement and Concrete Research, 2014, 65(11), 30.
5 Cheng S, Shui Z, Sun T, et al. Construction and Building Materials, 2019, 204, 265.
6 Cao Y Z, Guo L P, Zang W J, et al. Materials Reports, 2018, 32(23), 4142(in Chinese).
曹园章, 郭丽萍, 臧文洁, 等.材料导报, 2018, 32(23), 4142.
7 Shui Z H, Yu J, Yu R, et al. Journal of Wuhan University of Technology, 2018, 40(5), 14(in Chinese).
水中和, 余杰, 余睿, 等. 武汉理工大学学报, 2018, 40(5), 14.
8 Wang J Y, Zhu Q X, Yuan Q, et al. Water Resources and Power, 2022, 40(7), 163(in Chinese).
王建有, 祝启鑫,袁群等. 水电能源科学, 2022, 40(7), 163.
9 Wang H X, Long G C, Xie Y J, et al. Construction and Building Mate-rials, 2022, 347, 128513.
10 ASTM C1585-13, Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes, ASTM International, United States, 2013, pp. 4.
11 Yin S, Li B X, Chen P B, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(4), 1205(in Chinese).
殷实,李北星,陈鹏博, 等. 硅酸盐通报, 2023, 42(4), 1205.
12 Tang L, Nilsson L O. Cement and Concrete Research, 1993, 23(2), 247.
13 Yuan Q, Shi C J, De Schutter G, et al. Construction and Building Materials, 2009, 23(1), 1.
14 ASTM C1218, Standard test method for water-soluble chloride in mortar and concrete, ASTM International, United States, 2020, pp. 2.
15 Guo Y Q. Structure and composition design and properties of blended cement paste based on resistance to chloride ingress. Ph.D. Thesis, South China University of Technology, China, 2020 (in Chinese).
郭奕群. 基于抗氯离子侵蚀性能的复合水泥浆体的组成与结构设计及性能研究. 博士学位论文, 华南理工大学, 2020.
16 Dhir R K, Hewlett P C, Chan Y N. Magazine of Concrete Research, 2015, 41(148), 137.
17 Martínez-García C, González-Fonteboa B, Carro-López D, et al. Journal of Cleaner Production, 2019, 215, 650.
18 Silva B A, Ferreira Pinto A P, Gomes A. Construction and Building Materials, 2015, 94, 346.
19 Jiang C, Jin C, Wang Y, et al. Construction and Building Materials, 2018, 186, 379.
20 Dos M J H V S, Darlan P, Dias G G P, et al. Construction and Building Materials, 2021, 313, 125413.
21 Hou W, Liu Z Q, Huang J, et al. Construction and Building Materials, 2021, 274, 122056.
22 He J, Yang C H. Bulletin of the Chinese Ceramic Society, 2009, 28(6), 1225(in Chinese).
何娟,杨长辉. 硅酸盐通报, 2009,28(6), 1225.
23 Chang H L, Mu S, Feng P. Cement and Concrete Research, 2018, 103, 95.
[1] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[2] 欧阳江秀, 鲁艳军, 卓永就, 钟慧敏, 徐锦豪. 疏水性微结构聚合物的高效注塑成形制备[J]. 材料导报, 2024, 38(15): 23020203-6.
[3] 王露, 涂拥军, 高富豪, 刘数华. 改性磷石膏对超硫酸盐水泥水化特性的影响[J]. 材料导报, 2024, 38(14): 22120115-6.
[4] 左斌, 尹洪峰, 刘云, 辛亚楼, 刘宇驰, 袁蝴蝶. 水泥回转窑过渡带用尖晶石-方镁石-铝酸钙耐火材料的制备[J]. 材料导报, 2024, 38(12): 23010150-5.
[5] 宋欣, 贾文涛, 李健, 周相龙, 马天宇. 2∶17型钐钴永磁材料的相变机制研究新进展[J]. 材料导报, 2023, 37(3): 22120078-9.
[6] 易家俊, 左晓宝, 黎亮, 邹欲晓. 水泥水化过程的概率模型及其微结构演变的数值模拟[J]. 材料导报, 2023, 37(18): 22040014-7.
[7] 陈该青, 刘凯, 徐幸, 吴瑛, 肖勇. 泡沫Ni/In-48Sn复合焊料钎焊Al合金接头显微结构及力学性能研究[J]. 材料导报, 2023, 37(17): 22100141-6.
[8] 田玉玉, 何韧, 吴菊英, 钟卫洲, 张凯. 电容式柔性压力传感器的性能优化原理及研究进展[J]. 材料导报, 2023, 37(16): 21110277-14.
[9] 吕邦成, 郭丽萍, 丁聪, 吴建东, 曹园章, 陈波. 高延性地质聚合物复合材料性能及微结构研究进展[J]. 材料导报, 2023, 37(10): 21060226-11.
[10] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[11] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[12] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[13] 姚峄林, 张锦秋, 杨培霞, 安茂忠. 激光辅助电沉积技术及其在制备功能材料方面的应用[J]. 材料导报, 2022, 36(3): 20080209-9.
[14] 王冕, 张全超, 敖海勇, 万怡灶. 形状记忆聚合物表面响应性润湿性研究进展[J]. 材料导报, 2022, 36(21): 20090319-9.
[15] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 20100189-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed