Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21060226-11    https://doi.org/10.11896/cldb.21060226
  高分子与聚合物基复合材料 |
高延性地质聚合物复合材料性能及微结构研究进展
吕邦成1, 郭丽萍1,2,3,*, 丁聪1, 吴建东1, 曹园章1, 陈波4
1 东南大学材料科学与工程学院,南京 211189
2 江苏省土木工程材料重点实验室,南京 211189
3 江苏省先进土木工程材料协同创新中心,南京 211189
4 南京水利科学研究院水文资源与水利工程科学国家重点实验室,南京 210029
A Review on Performance and Microstructure of High Ductility Geopolymer Composites
LYU Bangcheng1, GUO Liping1,2,3,*, DING Cong1, WU Jiandong1, CAO Yuanzhang1, CHEN Bo4
1 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, China
3 Jiangsu Collaborative Innovation Center for Advanced Civil Engineering Materials, Nanjing 211189, China
4 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
下载:  全 文 ( PDF ) ( 27828KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于桥联法则理论、经微观力学设计而成的高延性水泥基复合材料(HDCC)以其拉伸荷载下具有的多缝开裂和应变硬化性能而优于普通混凝土,然则其发展仍受制于高制备成本及碳排放。近10年来,绿色经济性地质聚合物/碱激发材料与纤维复合增韧的高延性复合材料(HDGC)得到研究与发展。本文在概述地质聚合物/碱激发材料反应机理及HDCC材料设计理论的基础上,主要综述了HDGC基本性能与微结构的已有最新研究进展。研究表明,制备HDGC具有可行性且制备的HDGC表现出高延性复合材料所具备的力学响应特点,包括压缩、拉伸应变硬化、界面微观力学、弯曲、抗冲击性能等。然而,受材料组成复杂等因素影响,HDGC力学和微结构依赖于地质聚合物/碱激发材料基体化学性质的改变。HDGC同时具有更小的裂缝宽度而利于材料自修复、较大收缩值以及潜在的良好耐久性。此外,基于有限研究,对比了HDGC与HDCC的相似与差异,以期更好地了解地质聚合物/碱激发材料被用作HDCC替代品时应注意的条件。最后进一步对HDGC存在的问题和研究方向做出了总结与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕邦成
郭丽萍
丁聪
吴建东
曹园章
陈波
关键词:  高延性  地质聚合物  碱激发  应变硬化  微结构    
Abstract: High ductility cement-based composites (HDCC), based on the bridge principal theory and designed by micromechanics, are superior to ordinary concrete due to their multiple cracking and strain hardening properties under tensile load, but their development is still limited by high production costs and carbon emissions. In the past decade, green and economical high ductility composites (HDGC) reinforced by geopolymer/alkali activated materials and fiber have been researched and developed. On the basis of summarizing the reaction mechanism of geopolymer/alkali activated materials and the design theory of HDCC materials, this paper mainly reviews the recent advances in the basic properties and microstructure of HDGC. The results show that the preparation of HDGC is feasible and the HDGC exhibits mechanical response characteristics of high ductility composites, including compression, tensile strain hardening, interface micromechanics, bending, impact resistance, etc. However, the mechanics and microstructure of HDGC depend on changes in the chemical properties of the geopolymer/alkali activated material matrix due to the complex composition of the material. HDGC also has smaller crack widths that facilitate material self-healing, larger shrinkage values, and potentially good durability. In addition, based on limited studies, the similarities and differences between HDGC and HDCC were compared in order to better understand the conditions that should be paid attention to when geopolymer/alkali activated materials are used as HDCC substitutes. Finally, the existing problems and research direction of HDGC are summarized and prospected.
Key words:  high ductility    geopolymer    alkali activated    strain hardening    microstructure
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52178191;51778133);国家重点研发计划资助项目(973计划)(2015CB655102)
通讯作者:  *郭丽萍,博士,教授,博士研究生导师。2002年9月至2008年6月于东南大学硕博连读,获得工学硕士和工学博士学位。现为东南大学材料科学与工程学院副院长、党委委员,教育部“首批党建工作样板支部”建材党支部书记。入选 2015 年度江苏省第十二批“六大人才高峰”项目、2018 年度江苏省第五期“333 工程”第三层次人才。研究工作主要围绕生态高延性纤维混凝土的基础理论和应用研究以及水泥基复合材料的耐久性研究。主持包括国家自然科学基金青年和面上项目、973 项目专题、教育部博士点基金、中国铁路总公司重点课题和企业合作等项目20余项,以第一作者和通信作者在国内外学术期刊上发表论文 100余篇,其中 SCI 收录40余篇; 授权国家发明专利21项。获教育部科技进步二等奖2项、中国铁道学会铁道科技二等奖1项。guoliping@163.com   
作者简介:  吕邦成,2019年6月毕业于安徽建筑大学,获得硕士学位,现为东南大学材料科学与工程学院博士研究生,在郭丽萍教授的指导下进行研究。主要从事高延性水泥基复合材料、碱激发材料、固废物再利用领域的研究。
引用本文:    
吕邦成, 郭丽萍, 丁聪, 吴建东, 曹园章, 陈波. 高延性地质聚合物复合材料性能及微结构研究进展[J]. 材料导报, 2023, 37(10): 21060226-11.
LYU Bangcheng, GUO Liping, DING Cong, WU Jiandong, CAO Yuanzhang, CHEN Bo. A Review on Performance and Microstructure of High Ductility Geopolymer Composites. Materials Reports, 2023, 37(10): 21060226-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060226  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21060226
1 Li V C, Leung C K Y. Journal of Engineering Mechanics, 1992, 188(11), 2246.
2 Li V C. Journal of the Chinese Ceramic Society, 2007(4), 531 (in Chinese).
Li V C. 硅酸盐学报, 2007(4), 531.
3 Li V C, Wu H C. Applied Mechanics Reviews, 1992, 45, 390.
4 Maalej M, Li V C. Journal of Materials in Civil Engineering, 1994, 6, 513.
5 Zhang Y, Bai S, Zhang Q, et al. Construction and Building Materials, 2015, 78, 470.
6 Raamesh A S P, Balasundaram N, Karthik V, et al. Materials Today:Proceedings, DOI:10.1016/j.matpr.2020.10.512.
7 Yang J B, Wen H, Tang J H, et al. Qinghai Transportation Science and Technology, 2020, 32(2), 97 (in Chinese).
杨建波, 文辉, 唐继辉, 等. 青海交通科技, 2020, 32(2), 97.
8 Reda M, Shrive N, Gillott J. Cement and Concrete Research, 1999, 29(3), 323.
9 Cao M L, Xu L, Zhang C. Journal of the Chinese Ceramic Society, 2015, 43(5), 632 (in Chinese).
曹明莉, 许玲, 张聪. 硅酸盐学报, 2015, 43(5), 632.
10 Gao S L, Wang W C. Materials Reports, 2019, 33(11), 3620 (in Chinese).
高淑玲, 王文昌, 材料导报, 2019, 33(11), 3620.
11 Wang S X, Li V C. ACI Materials Journal, 2007, 104(3), 233.
12 Nematollahi B, Sanjayan J, Shaikh F U A. Composites Part B:Enginee-ring, 2016, 89, 253.
13 Ohno M, Li V C. Construction and Building Materials, 2014, 57, 163.
14 Li F P, Yang Z M, Zheng A H, et al. Ceramics International, DOI:10.1016/j.ceramint.2021.02.008.
15 Ohno M, Li V C. Cement and Concrete Composites, 2018, 88, 73.
16 Wang A G, Lyu B C, Zhang Z H, et al. Construction and Building Materials, 2018, 187, 1004.
17 Wu Y G, Lu B W, Bai T, et al. Construction and Building Materials, 2019, 224, 930.
18 Davidovits J. In:Proceedings of the First European Conference on Soft Mineralogy. Compicgne, France, 1988, pp.132.
19 Xu H, Deventer J S J V. International Journal of Mineral Processing, 2000, 59, 247.
20 Provis J L. Modelling the formation of geopolymers. Ph. D. Thesis, University of Melbourne, Australia, 2006.
21 Davidovits J. In:Proceedings of 2005 Geopolymere Conference. Saint-Quentin, 2005, pp.9.
22 Fernández-Jiménez A, Palomo A, Criado M. Cement & Concrete Research, 2005, 35(6), 1204.
23 Duxson P, Fernández-Jiménez A, Provis J L, et al. Journal of Materials Science, 2007, 42(9), 2917.
24 Zheng W Z, Zou M N, Wang Y. Journal of Building Structures, 2019, 40(1), 28 (in Chinese).
郑文忠, 邹梦娜, 王英. 建筑结构学报, 2019, 40(1), 28.
25 Yang N R. Non-traditional cementitious materials chemistry, Wuhan University of Technology Press, China, 2018 (in Chinese).
杨南如. 非传统胶凝材料化学, 武汉理工大学出版社, 2018.
26 Li C, Sun H H, Li L T. Cement and Concrete Research, 2010, 40(9), 1341.
27 Duxson P, Provis J L. Journal of the American Ceramic Society, 2008, 91(12), 3864.
28 Krizan D, Zivanovic B. Cement Concrete Research, 2002, 32, 1181.
29 Zheng W Z, Zhu J. Application foundation of alkali-activated slag cementitious material in structural engineering, Harbin Institute of Technology Press, China, 2015 (in Chinese).
郑文忠, 朱晶. 碱矿渣胶凝材料结构工程应用基础, 哈尔滨工业大学出版社, 2015.
30 Zhang S Z, Li V C, Ye G. Cement and Concrete Composites, 2020, 109, 103510.
31 Lee B Y, Cho C G, Lim H J, et al. Construction and Building Materials, 2012, 37, 15.
32 Yang E, Li V C. Construction and Building Materials, 2014, 52, 96.
33 Li V C. In:9th ICF Conference on Fracture. Sydney, Australia, 1997, pp.619.
34 Li V C. Structural Engineering, 1993, 10(2), 37.
35 Li V C. International Journal of Concrete Structures & Materials, 2012, 6(3), 135.
36 Kanda T, Li V C. Journal of Advanced Concrete Technology, 2006, 4(1), 59.
37 Nematollahia B, Qiu J S, Yang E H, et al. Ceramics International, 2017, 43, 15616.
38 Ranjbar N, Zhang M Z. Cement and Concrete Composites, 2020, 107, 103498.
39 Zahid M, Shafiq N, Razak S N A, Tufail R F, Construction and Building Materials, 2020, 265, 120295.
40 Alrefaei Y, Dai J G. Construction and Building Materials, 2018, 184, 419.
41 Farooq M, Bhutta A, Banthia N. Cement and Concrete Composites, 2019, 103, 183.
42 Şahmaran M, Bilici Z, Ozbay E, et al. Composites Part B:Engineering, 2013, 45(1), 356.
43 Tan M L, Sun R J, Zhou Z D, et al. Railway Engineering, 2014(3), 115 (in Chinese).
谭明轮, 孙仁娟, 周志东, 等. 铁道建筑. 2014(3), 115.
44 Kan L L, Zhang L, Zhao Y J, et al. Construction and Building Mate-rials, 2020, 231, 117161.
45 Redon C, Li V C, Wu C, et al. ASCE Journal of Materials in Civil Engineering, 2001, 13(6), 399.
46 Nematollahi B, Sanjayan J, Qiu J S, et al. Archives of Civil and Mechanical Engineering, 2017, 17, 555.
47 Choi J, Nguyē n H H, Cha S L, et al. Construction and Building Materials, 2021, 273, 121760.
48 Lei D Y, Guo L P, Li Y, et al. Construction and Building Materials, 2021, 267, 120668.
49 Curosu I, Liebscher M, Alsous G, et al. Cement and Concrete Compo-sites, 2020, 114, 103722.
50 Trindade A C C, Curosu I, Liebscher M, et al. Construction and Buil-ding Materials, 2020, 248, 118558.
51 Ling Y F, Wang K J, Li W G, et al. Composites Part B, 2019, 164, 747.
52 Kan L L, Shi R X, Zhao Y J, et al. Journal of Cleaner Production, 2020, 254, 120168.
53 Li V C, Stang H. Advaced Cement Based Materials, 1997, 6(1), 1.
54 Yang E H, Wang S, Yang Y, et al. Journal of Advanced Concrete Technology, 2018, 6(1), 18.
55 Kan L L, Wang W S, Liu W D, et al. Cement and Concrete Composites, 2020, 108, 103521.
56 Lee Y, Choi J, Kim H K, et al. Composite Structures, 2017, 172, 166.
57 Nematollahi B, Sanjayan J, Qiu J S, et al. Construction and Building Materials, 2017, 131, 552.
58 Choi J, Song K, Song J K, et al. Composite Structures, 2016, 138, 116.
59 Choi J, Lee B Y, Ranade R, et al. Cement and Concrete Composites, 2016, 70, 153.
60 Zahid M, Shafiq N, Isa M H, et al. Journal of Cleaner Production, 2018, 194, 483.
61 Fischer G D. Deformation behavior of reinforced ECC flexural members under reversed cyclic loading condition, Ph. D. Thesis, University of Michigan, America, 2002.
62 Wang S, Li V C. In:Proceedings of International RILEM Workshop HPFRCC in Structural Application. Hawaii, 2006, pp.65.
63 Al-Majidi M H, Lampropoulos A, Cundy A B. Composite Structures, 2017, 168, 402.
64 Khan M Z N, Hao Y F, Hao H, et al. Cement and Concrete Composites, 2018, 85, 133.
65 Shaikh F U A, Fairchild A, Zammar R. Construction and Building Materials, 2018, 163, 890.
66 Li L, Wu W J, Wu J, et al. Building Structure, 2018, 48(S1), 545 (in Chinese).
李亮, 吴文杰, 吴俊, 等. 建筑结构, 2018, 48(S1), 545.
67 Silva F D A, Borges P H R, Trindade A C C. Advances in Civil Enginee-ring Materials, 2019, 8(3), 361.
68 Trindade A C C, Heravi A A, Curosu I, et al. Cement and Concrete Composites, 2020, 113, 103703.
69 Kan L L, Lv J W, Duan B B, et al. Cement and Concrete Research, 2019, 125, 105895.
70 Zhang Z G, Zhang Q. Construction and Building Materials, 2017, 156, 142.
71 Nguyēn H H, Choi J, Song K, et al. Construction and Building Materials, 2018, 165, 801.
72 Wu M, Johannesson B, Geiker M. Construction and Building Materials, 2012, 28(1), 571.
73 Kan L L, Duan B B, Yan T. Acta Materiae Compositae Sinica, 2018, 35(10), 2841 (in Chinese).
阚黎黎, 段贝贝, 闫涛. 复合材料学报, 2018, 35(10), 2841.
74 Guo X L, Yang J Y. Construction and Building Materials, 2020, 230, 116965.
75 Nguyēn H H, Choi J, Kim H K, et al. Construction and Building Materials, 2019, 224, 980.
76 Nguyēn H H, Choi J, Kim H K, et al. Composite Structures, 2019, 229, 111401.
77 Guo L P, Chen Z K, Chen B, et al. Materials Reports, 2019, 33(5), 744 (in Chinese).
郭丽萍, 谌正凯, 陈波, 等. 材料导报, 2019, 33(5), 744.
78 Wang Y, Wang Y S, Zhang M Z. Journal of Building Engineering, 2021, 34, 101951.
79 Xu Y W. Study on alkali-activated slag composite with engineered matrix in coordination with several fibers. Master’s Thesis, Chongqing University, China, 2018 (in Chinese).
许耀文. 碱激发矿渣 ECC 基体设计与多纤维协同作用研究. 硕士学位论文, 重庆大学, 2018.
80 Wang Y, Chan C L, Leong S H, et al. Construction and Building Mate-rials, 2020, 261, 120585.
81 Zhang J, Gong C X, Ju X C. Journal of Hydraulic Engineering, 2011, 42(12), 1452 (in Chinese).
张君, 公成旭, 居贤春. 水利学报, 2011, 42(12), 1452.
82 Guo L P, Chen B, Sun W, et al. Journal of the Chinese Ceramic Society, 2016, 44(11), 1609 (in Chinese).
郭丽萍, 陈波, 孙伟, 等. 硅酸盐学报, 2016, 44(11), 1609.
83 Zhang Y S, Zhang W H, Chen Z Y. Materials Reports, 2017, 31(23), 1 (in Chinese).
张云升, 张文华, 陈振宇. 材料导报, 2017, 31(23), 1.
84 Gao S L, Wang Z, Wang W H, et al. Construction and Building Mate-rials, 2018, 17910, 172.
85 Zhong H, Zhang M Z. Cement and Concrete Composites, 2021, 122, 104167.
86 Zhang D W, Wang D M. Materials Reports, 2018, 32(9), 1519 (in Chinese).
张大旺, 王栋民. 材料导报, 2018, 32(9), 1519.
87 Pakravan H R, Ozbakkaloglu T. Construction and Building Materials, 2019, 207, 491.
[1] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[2] 朱艳春, 邵珠彩, 罗媛媛, 黄志权, 牛勇, 秦建平. Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究[J]. 材料导报, 2023, 37(5): 21070259-6.
[3] 魏铭, 张长森, 王旭, 诸华军, 焦宝祥, 孙楠. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 21020065-10.
[4] 宋欣, 贾文涛, 李健, 周相龙, 马天宇. 2∶17型钐钴永磁材料的相变机制研究新进展[J]. 材料导报, 2023, 37(3): 22120078-9.
[5] 昌姗, 崔学民, 贺艳, 苏俏俏, 窦怀远. 碳酸酐酶在地质聚合物微球表面的固定及活性表征[J]. 材料导报, 2023, 37(3): 21030043-7.
[6] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[7] 刘源涛, 王琰帅, 董必钦. 偏铝酸钠激发石灰石粉的胶凝材料合成机理研究[J]. 材料导报, 2023, 37(1): 22030034-5.
[8] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[9] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[10] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[11] 姚峄林, 张锦秋, 杨培霞, 安茂忠. 激光辅助电沉积技术及其在制备功能材料方面的应用[J]. 材料导报, 2022, 36(3): 20080209-9.
[12] 徐县, 康晶, 蔡新华, 王维康. 碱激发锌渣胶凝材料设计制备与微观结构分析[J]. 材料导报, 2022, 36(22): 21050274-7.
[13] 王冕, 张全超, 敖海勇, 万怡灶. 形状记忆聚合物表面响应性润湿性研究进展[J]. 材料导报, 2022, 36(21): 20090319-9.
[14] 邓明科, 王雪松, 张敏, 马福栋, 罗妍, 孙宏哲. 钢筋高延性混凝土梁裂缝试验研究与计算方法[J]. 材料导报, 2022, 36(2): 20120239-9.
[15] 徐海燕, 杨雪雷, 王爱国, 朱颖灿, 刘开伟, 黄濛, 王星尧. 地质聚合物基防护涂料及其性能提升技术的研究进展[J]. 材料导报, 2022, 36(19): 21110045-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed