Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23080022-11    https://doi.org/10.11896/cldb.23080022
  无机非金属及其复合材料 |
硅酸盐水泥氯离子固化机理及影响因素研究进展
龙武剑1,2,3, 钟安楠1,2, 何闯4,*
1 深圳大学土木与交通工程学院,广东 深圳 518060
2 广东省滨海土木工程耐久性重点实验室,广东 深圳 518060
3 深圳市低碳建筑材料与技术重点实验室,广东 深圳 518060
4 台州学院建筑工程学院,浙江 台州 318000
Review of Chloride Binding and Influencing Factors of Portland Cement
LONG Wujian1,2,3, ZHONG Annan1,2, HE Chuang4,*
1 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
2 Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen 518060, Guangdong, China
3 Shenzhen Key Laboratory for Low-carbon Construction Material and Technology, Shenzhen 518060, Guangdong, China
4 School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China
下载:  全 文 ( PDF ) ( 8334KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氯离子侵蚀是滨海或除冰盐环境下钢筋混凝土结构耐久性劣化的首要原因。氯离子固化是提升钢筋混凝土结构抗氯离子侵蚀性能最为经济有效的手段之一。因此,大量文献对硅酸盐水泥(PC)氯离子固化机理、固化性能、影响因素等进行了广泛研究。然而,仍缺乏PC氯离子固化方面的系统性总结论述。因此,本文对PC氯离子固化机理及影响因素的研究进展进行了全面系统综述。首先详细介绍了两类氯离子固化机理;其次分析了氯离子固化性能影响因素;然后定义了氯离子固化贡献度并讨论了不同因素影响下的贡献度变化;最后概述了PC氯离子固化领域面临的主要挑战。本文有助于深化理解PC氯离子固化机理及影响因素,为钢筋混凝土结构寿命预测及耐久性提升提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙武剑
钟安楠
何闯
关键词:  氯离子  固化机理  固化性能  硅酸盐水泥    
Abstract: Corrosion of reinforcement induced by chloride corrosion is the primary cause of durability deterioration to reinforced concrete structures in coastal or de-icing salt environments. Chloride binding is one of the most economical and the most effective measures to enhance the anti-chloride-corrosion ability of reinforced concrete structures. Therefore, a large number of references have extensively studied the mechanism, performance, and influence factors of chloride binding in Portland cement (PC). However, It's lack of systematic summary and discussion on chloride binding of PC. Herein, this paper presents a comprehensive and systematic review of the research progress in the mechanism and influence factors of chloride binding of PC. Firstly, two types of chloride binding mechanisms are detailedly introduced. Secondly, the influence factors of chloride binding performance are analyzed. Thirdly, the contribution of chloride binding is defined, and the contribution change under different factors is discussed. Finally, the main challenges in the field of chloride binding of PC are summarized. These contribute to a deeper understanding of the mechanism and influence factors of chloride binding of PC, and provide references for the prediction of service life and the durability improvement of reinforced concrete structures.
Key words:  chloride    chloride binding mechanism    chloride binding capacity    Portland cement
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TU528  
基金资助: 国家自然科学基金-山东联合基金(U2006223);国家自然科学基金-青年基金 (52208273);广东省重点领域研发计划项目(2019B111107003);深圳市低碳建筑材料与技术重点实验室(ZDSYS20220606100406016)
通讯作者:  *何闯,台州学院建筑工程学院副教授、硕士研究生导师。2020年12月博士毕业于大连理工大学工程力学专业,2023年3月博士后出站于深圳大学土木工程专业。目前主要从事腐蚀防护、碳点规模化应用等方面的研究工作,近五年以第一作者或通信作者在Carbon、Green Chem、Cement Concrete Comp.、Constr、Build、Mater等发表论文近20篇。hechuang@szu.edu.cn   
作者简介:  龙武剑,深圳大学土木与交通工程学院教授、执行院长,博士研究生导师。2001 年本科毕业于法国国立图卢兹第三大学,2004 年在法国高等师范大学取得硕士学位,2008 年从加拿大舍布鲁克大学博士毕业后在深圳大学工作至今。 目前主要从事智能土木工程材料-结构设计及应用一体化研究、纳米改性水泥基复合材料、滨海混凝土材料-结构使用寿命等方面的研究,近五年在Carbon、Green Chem、Cement Concrete Comp、ACI Mater J、Compos Part B-Eng、Automat Constr等国际知名期刊发表第一作者&通信作者学术论文80余篇。
引用本文:    
龙武剑, 钟安楠, 何闯. 硅酸盐水泥氯离子固化机理及影响因素研究进展[J]. 材料导报, 2024, 38(21): 23080022-11.
LONG Wujian, ZHONG Annan, HE Chuang. Review of Chloride Binding and Influencing Factors of Portland Cement. Materials Reports, 2024, 38(21): 23080022-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080022  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23080022
1 Shah I H, Miller S A, Jiang D, et al. Nature Communications, 2022, 13, 5758.
2 Neville A. Materials and Structures, 1995, 28, 63.
3 Martın-Pérez B, Zibara H, Hooton R D, et al. Cement and Concrete Research, 2000, 30, 1215.
4 Mohammed T U, Hamada H. Cement and Concrete Research, 2003, 33, 1487.
5 Angst U, Elsener B, Larsen C K, et al. Cement and Concrete Research, 2009, 39, 1122.
6 Alonso C, Andrade C, Castellote M, et al. Cement and Concrete research, 2000, 30(7), 1047.
7 Falzone G, Balonis M, Bentz D, et al. Cement and Concrete Research, 2017, 101, 82.
8 Balonis M, Sant G, Isgor O B. Cement and Concrete Composites, 2019, 101, 15.
9 Szabo S, Bakos I. Corrosion Reviews, 2006, 24, 231.
10 Hassan Z. Binding of external chloride by cement pastes. Ph.D. Thesis, University of Toronto, Canada, 2001.
11 Yuan Q, Shi C, De Schutter G, et al. Construction and Building Mate-rials, 2009, 23, 1.
12 Wang X G, Shi C J, He F Q, et al. Journal of the Chinese Ceramic Society, 2013, 41(2), 187 (in Chinese).
王小刚, 史才军, 何富强, 等. 硅酸盐学报, 2013, 41(2), 187.
13 Liang W J, Tan H B, Lv Z L, Bulletin of the Chinese Ceramic Society,2023, 42(8), 2667 (in Chinese).
梁文杰,谭洪波,吕周岭. 硅酸盐通报, 2023, 42(8), 2667
14 Georget F, Bénier C, Wilson W, et al. Cement and Concrete Research, 2022, 152, 106656.
15 Ming X, Liu Q, Wang M, et al. Cement and Concrete Composites, 2023, 136, 104898.
16 Wilson W, Gonthier J N, Georget F, et al. Cement and Concrete Research, 2022, 156, 106747.
17 Jain A, Gencturk B, Pirbazari M, et al. Cement and Concrete Research, 2021, 143, 106378.
18 Elakneswaran Y, Iwasa A, Nawa T, et al. Cement and Concrete Research, 2010, 40, 1756.
19 Elakneswaran Y, Nawa T, Kurumisawa K. Cement and Concrete Research, 2009, 39, 340.
20 Florea M V A, Brouwers H J H. Cement and Concrete Research, 2012, 42, 282.
21 Yang Y, Patel R A, Churakov S V, et al. Cement and Concrete Com-posites, 2019, 96, 55.
22 Hu X, Shi C, Yuan Q, et al. Cement and Concrete Research, 2018, 106, 49.
23 Pointeau I, Reiller P, Macé N, et al. Journal of Colloid and Interface Science, 2006, 300, 33.
24 Plusquellec G, Nonat A. Cement and Concrete Research, 2016, 90, 89.
25 Feng W, Xu J, Chen P, et al. Construction and Building Materials, 2018, 158, 847.
26 Nguyen T H Y, Tsuchiya K, Atarashi D, et al. Construction and Building Materials, 2020, 240, 117944.
27 Hemstad P, Machner A, De Weerdt K. Cement and Concrete Research, 2020, 130, 105976.
28 Labbez C, Nonat A, Pochard I, et al.Journal of Colloid and Interface Science, 2007, 309, 303.
29 Henocq P. Modulization des interactions inquest à la surface des silicates de calcium hydrates. Ph.D. Thesis, Laval University, Canada, 2005.
30 Ramachandran V S. Matériaux et Construction, 1971, 4, 3.
31 Justnes H. Nordic Concrete Research Publications, 1998, 21, 48.
32 Quennoz A, Scrivener K L. Cement and Concrete Research, 2012, 42, 1032.
33 Ming X, Li Y, Liu Q, et al. Cement and Concrete Composites, 2023, 137, 104928.
34 Cai Y, Xuan D, Hou P, et al. Cement and Concrete Research, 2021, 149, 106565.
35 Balonis M, Lothenbach B, Le Saout G, et al. Cement and Concrete Research, 2010, 40, 1009.
36 Chen P, Ma B, Tan H, et al. Journal of Cleaner Production, 2021, 283, 124612.
37 Balonis M. The influence of inorganic chemical accelerators and corrosion inhibitors on the mineralogy of hydrated portland cement systems. Ph.D. Thesis, Aberdeen University, UK, 2010.
38 Yue Y, Wang J J, Basheer P A M, et al. Cement and Concrete Compo-sites, 2018, 86, 306.
39 Matschei T, Lothenbach B, Glasser F P. Cement and Concrete Research, 2007, 37, 118.
40 Ming X, Liu Q, Li Y, et al. Cement and Concrete Research, 2022, 162, 106996.
41 Falzone G, Balonis M, Sant G. Cement and Concrete Research, 2015, 72, 54.
42 Baquerizo L G, Matschei T, Scrivener K L, et al. Cement and Concrete Research, 2015, 73, 143.
43 Mesbah A, François M, Cau-dit-Coumes C, et al. Cement and Concrete Research, 2011, 41, 504.
44 Gbozee M, Zheng K, He F, et al. Applied Clay Science, 2018, 158, 186.
45 Puerta-Falla G, Balonis M, Falzone G, et al. Industrial & Engineering Chemistry Research, 2017, 56, 63.
46 Suryavanshi A K, Scantlebury J D, Lyon S B. Cement and Concrete Research, 1996, 26, 717.
47 Nedyalkova L, Tits J, Renaudin G, et al. Journal of Colloid and Interface Science, 2022, 608, 683.
48 Yang Z, Gao Y, Mu S, et al. Construction and Building Materials, 2019, 195, 415.
49 Zhang T, Tian W, Guo Y, et al. Construction and Building Materials, 2019, 205, 357.
50 Zhou Y, Hou D, Jiang J, et al. Construction and Building Materials, 2016, 126, 991.
51 Arya C, Buenfeld N R, Newman J B. Cement and Concrete Research, 1990, 20, 291.
52 Luping T, Nilsson L O. Cement and Concrete Research, 1993, 23, 247.
53 Chang H, Wang X, Wang Y, et al. Cement and Concrete Composites, 2023, 135, 104821.
54 Hirao H, Yamada K, Takahashi H, et al. Journal of Advanced Concrete Technology, 2005, 3, 77.
55 Thomas M D A, Hooton R D, Scott A, et al. Cement and Concrete Research, 2012, 42, 1.
56 Cao Y, Guo L, Chen B, et al. Construction and Building Materials, 2020, 246, 118398.
57 Guo B, Qiao G, Han P, et al. Journal of Building Engineering, 2022, 49, 104021.
58 Mesbah A, Cau-dit-Coumes C, Renaudin G, et al.Cement and Concrete Research, 2012, 42, 1157.
59 Ukpata J O, Basheer P A M, Black L. Construction and Building Mate-rials, 2019, 195, 238.
60 Peterson K, Julio-Betancourt G, Sutter L, et al. Cement and Concrete Research, 2013, 45, 79.
61 Galan I, Perron L, Glasser F P.Cement and Concrete Research, 2015, 68, 174.
62 Tritthart J. Cement and Concrete Research, 1989, 19, 683.
63 Tran V Q, Soive A, Bonnet S, et al. Construction and Building Mate-rials, 2018, 191, 608.
64 Qiao C, Suraneni P, Ying T N W, et al. Cement and Concrete Compo-sites, 2019, 97, 43.
65 De Weerdt K, Colombo A, Coppola L, et al. Cement and Concrete Research, 2015, 68, 196.
66 Long W J, Zhang X, Feng G L, et al. Cement and Concrete Composites, 2022, 132, 104603.
67 Shi Z, Geiker M R, De Weerdt K, et al. Cement and Concrete Research, 2017, 95, 205.
68 Teymouri M, Shakouri M, Vaddey N P. Construction and Building Materials, 2021, 312, 125415.
69 Guo B, Hong Y, Qiao G, et al. Journal of Colloid and Interface Science, 2018, 531, 56.
70 Xu J, Song Y, Jiang L, et al. Construction and Building Materials, 2016, 104, 9.
71 Panesar D K, Chidiac S E. Journal of Cold Regions Engineering, 2011, 25, 133.
72 Tran V Q, Nguyen H L, Dao D V, et al. Magazine of Concrete Research, 2021, 73, 771.
73 Zhao Y, Hu X, Shi C, et al. Cement and Concrete Composites, 2021, 124, 104217.
74 Cheewaket T, Jaturapitakkul C, Chalee W. Construction and Building Materials, 2010, 24, 1352.
75 Beaudoin J J, Ramachandran V S, Feldman R F. Cement and Concrete Research, 1990, 20, 875.
76 Zhou Y, Hou D, Jiang J, et al. Microporous and Mesoporous Materials, 2018, 255, 23.
77 Dousti A, Beaudoin J J, Shekarchi M. Construction and Building Mate-rials, 2017, 154, 1035.
78 Zibara H, Hooton R D, Thomas M D A, et al. Cement and Concrete Research, 2008, 38, 422.
79 Monteiro P J M, Wang K, Sposito G, et al. Cement and Concrete Research, 1997, 27, 1899.
80 Wang N, Zhao R, Zhang L, et al. Microporous and Mesoporous Materials, 2022, 345, 112248.
81 Zhu Q, Jiang L, Chen Y, et al. Construction and Building Materials, 2012, 37, 512.
82 Chu H, Pan C, Guo M Z, et al. Construction and Building Materials, 2020, 245, 118402.
83 Teymouri M, Shakouri M. Construction and Building Materials, 2023, 370, 130667.
84 Lv Z, Tan H, Liu X, et al. Construction and Building Materials, 2023, 364, 129804.
85 Liu J, Qiu Q, Chen X, et al. Cement and Concrete Research, 2017, 95, 217.
86 Goni S, Guerrero A. Cement and Concrete Research, 2003, 33, 21.
87 Machner A, Zajac M, Haha M B, et al. Cement and Concrete Composites, 2018, 89, 89.
88 Zhu X, Zi G, Cao Z, et al. Construction and Building Materials, 2016, 110, 369.
89 Chang H. Cement and Concrete Composites, 2017, 84, 1.
90 Suryavanshi A K, Swamy R N. Cement and Concrete Research, 1996, 26, 729.
91 Zheng Y, Russell M, Davis G, et al. Construction and Building Mate-rials, 2021, 302, 124171.
92 Wang Y, Shui Z, Gao X, et al. Construction and Building Materials, 2019, 201, 380.
93 Saillio M, Baroghel-Bouny V, Barberon F. Construction and Building Materials, 2014, 68, 82.
94 Geng J, Easterbrook D, Liu Q F, et al. Magazine of Concrete Research, 2016, 68, 353.
95 Metalssi O O, Touhami R R, Barberon F, et al. Cement and Concrete Research, 2023, 164, 107065.
96 Zhang C, Chen W, Mu S, et al. Construction and Building Materials, 2021, 285, 122806.
97 De Weerdt K, Orsáková D, Geiker M R. Cement and Concrete Research, 2014, 65, 30.
98 Zhao Y, Hu X, Yuan Q, et al. Cement and Concrete Composites, 2023, 139, 105033.
99 Fei X P, Guo L P, Wu J D, et al. Construction and Building Materials, 2023, 392, 131967.
100 Yang T, Fan X, Gao X, et al. Construction and Building Materials, 2022, 358, 129427.
101 Yang Z, Sui S, Wang L, et al. Construction and Building Materials, 2020, 232, 117219.
102 Wang Y, Shui Z, Gao X, et al. Cement and Concrete Composites, 2020, 108, 103537.
103 Chen P, Ma B, Tan H, et al. Construction and Building Materials, 2020, 231, 117171.
104 Yoshida S, Elakneswaran Y, Nawa T. Cement and Concrete Composites, 2021, 121, 104109.
105 Guo Y, Zhang T, Tian W, et al. Journal of Materials Science, 2019, 54, 2152.
106 Li S, Jin Z, Yu Y. Construction and Building Materials, 2021, 293, 123493.
107 Wang J, Gao C, Tang J, et al. Cement and Concrete Composites, 2023, 105097.
108 Chang H, Feng P, Lyu K, et al. Construction and Building Materials, 2019, 225, 324.
[1] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[2] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[3] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[4] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[5] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[6] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[7] 刘佳杰, 后振中, 杨庆浩, 赵秋丽. 加成型液体硅橡胶的研究及应用进展[J]. 材料导报, 2024, 38(20): 23050199-7.
[8] 杨绿峰, 龙凤波, 孙继玮, 陈俊武. 混凝土暴露试验的稳定时长与试验分析方法[J]. 材料导报, 2024, 38(2): 22020091-7.
[9] 顾春平, 姚程阳, 陈士龙, 王倩楠. 溶液浓度与组成成分对氯离子在裂缝中传输速率的影响[J]. 材料导报, 2024, 38(19): 22100103-7.
[10] 郑建岚, 王晓敏, 张建全. 含氯再生骨料混凝土抗氯离子渗透性能的研究[J]. 材料导报, 2024, 38(18): 23050208-6.
[11] 王少伟, 肖焰钰, 朱平华, 严先萃, 夏群. 钙溶蚀对混凝土抗氯离子侵蚀性能的影响[J]. 材料导报, 2024, 38(16): 23020121-7.
[12] 莫耀鸿, 刘剑辉, 刘乐平, 陈正, 蒋增贵, 史才军. 水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究[J]. 材料导报, 2024, 38(14): 23030005-10.
[13] 张先满, 李星涛, 季坤鹏, 陈再雨, 罗洪峰. 原位生成周期性层片结构镀层及其在NaCl溶液中的腐蚀形貌[J]. 材料导报, 2024, 38(12): 22110026-7.
[14] 李辰治, 蒋林华. 石灰石粉掺量对混凝土中钢筋脱钝临界氯离子含量的影响[J]. 材料导报, 2024, 38(1): 22090288-7.
[15] 胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed