Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 22090308-6    https://doi.org/10.11896/cldb.22090308
  金属与金属基复合材料 |
微弧火花沉积Zr基非晶涂层的组织及性能
王婷1, 胡斌1,*, 王文琴2, 王非凡3
1 中国特种设备检测研究院,北京 100029
2 南昌大学先进制造学院,南昌 330031
3 北京宇航系统工程研究所,北京 100076
Microstructure and Properties of Zr-based Amorphous Coatings Deposited by Micro-arc Spark Deposition
WANG Ting1, HU Bin1,*, WANG Wenqin2, WANG Feifan3
1 China Special Equipment Inspection and Research Institute, Beijing 100029, China
2 School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
3 Beijing lnstitute of Astronautical Systems Engineering, Beijing 100076, China
下载:  全 文 ( PDF ) ( 66886KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Ti6Al4V合金具有良好的耐蚀性能和生物相容性,已被广泛用作骨替代材料,但是Ti6Al4V的耐磨性较差。Zr基非晶合金涂层具有高强度、高耐磨、高耐腐蚀和良好的生物相容性等优点,在生物医用材料领域具有巨大的发展前景。本工作采用微弧火花沉积技术在Ti6Al4V表面制备了Zr基非晶涂层来增加其表面耐磨性,研究了非晶涂层的显微组织和显微硬度,同时针对不同摩擦时间对涂层摩擦性能和磨损行为的影响进行深入探讨。结果表明:涂层主要由非晶相、Cu8Zr3和ZrO2相组成。涂层厚度为(150±10) μm且与基体具有良好的结合性。非晶涂层硬度值可达1 252HV0.1,约为基体的三倍。在不同摩擦时间下,涂层的磨损系数都小于基体,失重结果表明涂层具有更优异的耐磨性,摩擦时间为30 min时涂层的耐磨性为基体的4.8倍。不同摩擦时间下基体的磨损机制为磨粒磨损,涂层的磨损机制为疲劳磨损。本工作为进一步提高Ti6Al4V的耐磨性和Zr基非晶合金涂层的应用提供理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王婷
胡斌
王文琴
王非凡
关键词:  微弧火花沉积  非晶涂层  显微组织  耐磨性    
Abstract: Ti6Al4V alloy has good corrosion resistance and biocompatibility, and has been widely used as bone replacement materials. However, Ti6Al4V has poor wear resistance. Zr-based amorphous alloy coating has the advantages of high strength, high wear resistance, high corrosion resistance and good biocompatibility, which makes it have great application prospects in the field of biomedical materials. The Zr-based amorphous coating was prepared on the surface of TC4 by micro-arc spark deposition technology, and the micro-structure and micro-hardness of the coating were studied. Furthermore, wear behavior of the coating under different friction time were also investigated. The results show that the coatings mainly compose of Cu8Zr3, ZrO2, and amorphous phases. The coating thickness is about (150±10) μm and has good bonding with the substrate. The hardness value of the amorphous coating can reach up to 1 252HV0.1, which is about 3 times that of the substrate. Under different friction time, the coating exhibits a smaller wear coefficient than the substrate. When the friction time is 30 min, the wear resistance of the coating is 4.8 times that of the substrate. The wear mechanism of the substrate TC4 is abrasive wear, while the coating is fatigue wear. This work provides a theoretical basis for further improving the wear resistance of Ti6Al4V and the application of Zr-based amorphous alloy coating.
Key words:  micro-arc spark deposition    amorphous coating    microstructure    wear behavior
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TB304  
基金资助: 中国特检院青年基金项目(2021青年09)
通讯作者:  *胡斌,中国特种设备检测研究院首席研究员。国家重点研发计划“智能机器人”指南专家、全国无损检测学会副秘书长、国际状态监测委员会委员。长期从事无损检测监测和智能检测等方面的理论研究和工程应用,主持国家重点研发计划1项、国家自然科学基金面上项目1项、国家科技支撑/重大仪器专项/质检公益等课题/任务10余项,先后获国家科技进步二等奖1项、省部级一等奖4项、二等奖 5项,制定 ISO 标准2项、国家/行业标准30 余项,发表学术论文 60余篇、合作专著3本。hubin@csei.org.cn   
作者简介:  王婷,2014年9月于北京科技大学获得工学博士学位。现为中国特种设备检测研究院高级工程师。目前主要研究领域为功能材料的开发与无损检测技术。
引用本文:    
王婷, 胡斌, 王文琴, 王非凡. 微弧火花沉积Zr基非晶涂层的组织及性能[J]. 材料导报, 2024, 38(16): 22090308-6.
WANG Ting, HU Bin, WANG Wenqin, WANG Feifan. Microstructure and Properties of Zr-based Amorphous Coatings Deposited by Micro-arc Spark Deposition. Materials Reports, 2024, 38(16): 22090308-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090308  或          http://www.mater-rep.com/CN/Y2024/V38/I16/22090308
1 Kronmüller H.Philosophical Magazine.B,1983,48,127.
2 Turnbull D,Cohen M H.The Journal of Chemical Physics,1958,29,1049.
3 Inoue A.Materials Science and Engineering:A,1999,267,171.
4 Nishiyama N I A.Intermetallics,2002,11,1141.
5 Lindsay G A.Nature,1993,402,132.
6 Lu Z P,Liu C T.Physical Review Letters,2003,91,115505.
7 Alexander A B,Pyachin S A,Ermakov M A,et al.Journal of Materials Engineering and Performance,2017,26,901.
8 Li F,Liu T,Wang T,et al.Journal of the Mechanics and Physics of Solids,2019,132,103681.
9 Sheveyko A N,Kuptsov K A,Antonyuk M N,et al.Materials Letters,2022,318,132195.
10 Sina M,Sahar T,Saman N,et al.Additive Manufacturing Letters,2023,7,100156.
11 Xue J L,Hong J X,Yu J,et al.Materials Letters,2017,200,63.
12 Hong X,Tan Y F,Zhou C H,et al.Applied Surface Science,2015,356,1244.
13 Cadney S,Brochu M.Intermetallics,2008,16,518.
14 Kuptsov K A,Antonyuk M N,Bondarev A V,et al.Wear,2021,486,204094.
15 Xie Y,Wang M.Surface and Coatings Technology,2006,201,3564.
16 Hong X,Tan Y,Zhou C,et al.Applied Surface Science,2015,356,1244.
17 Zhang H,Xie Y,Huang L,et al.Surface and Coatings Technology,2014,258,495.
18 You Q,Shi S,You X,et al.Vacuum,2017,135,135.
19 Liang J,Liu Y,Li J,et al.Journal of Materials Science & Technology,2019,35,344.
20 Zhang C,Chu Z,Wei F,et al.Surface and Coatings Technology,2017,319,1.
21 Liang Y,Wang H.Materials & Design,2016,102,297.
22 Siegmann S,Abert C.Surface and Coatings Technology,2013,220,3.
23 Yang Y Z,Guo Z M,Hai D W,et al.Materials & Design,2016,110,332.
[1] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[2] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[3] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[4] 朱志彬, 蒋丽, 李艳辉, 张伟. 高熵复合材料微观结构、力学性能及耐磨性研究进展[J]. 材料导报, 2024, 38(14): 23050131-12.
[5] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[6] 俞伟元, 董鹏飞, 吴保磊. 超音速火焰喷涂氧燃比对铁基非晶涂层性能的影响[J]. 材料导报, 2024, 38(12): 22120200-6.
[7] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[8] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[9] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[10] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[11] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[12] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[13] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[14] 陈晨, 张亮, 王曦, 李木兰. Zn-Al系钎焊材料的研究进展[J]. 材料导报, 2023, 37(22): 22010081-13.
[15] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed