Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 23080135-7    https://doi.org/10.11896/cldb.23080135
  高分子与聚合物基复合材料 |
离子液体凝胶催化剂在合成乙酸正龙脑酯中的应用
刘会茹1, 张苗苗2, 徐智策2,*
1 石家庄学院化工学院,石家庄 050035
2 河北科技大学化学与制药工程学院,石家庄 050018
Ionic Liquid Gels as Novel Catalysts in Application of Esterification for N-bornyl Acetate
LIU Huiru1, ZHANG Miaomiao2, XU Zhice2,*
1 School of Chemical and Engineering, Shijiazhuang University, Shijiazhuang 050035, China
2 School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
下载:  全 文 ( PDF ) ( 3338KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 乙酸正龙脑酯作为医药中间体,具有广泛用途。无论是传统工艺的酸性催化剂,还是离子液体催化剂都存在催化剂与反应物有效分离困难、不易循环使用的缺点。将具备温敏性的离子液体凝胶作为乙酸正龙脑酯的新型催化剂,可突破离子液体催化酯化反应工业化的技术瓶颈。本工作以离子液体1-丁基-3-甲基咪唑硫酸氢盐、聚乙烯醇、单宁酸为原料,基于超分子组装原理,制备了温敏性离子液体凝胶催化剂。采用流变仪、热重分析仪、傅里叶变换红外光谱仪、核磁共振波谱仪对离子液体凝胶进行表征。结果显示,PVA-Ta-[BMIM]HSO4离子液体凝胶中存在羧酸酯键和氢键,是由咪唑环和苯环的π-π堆积作用构成的混合双网络聚合物,具有较高的机械强度和韧性。以乙酸正龙脑酯为反应模型,考察了离子液体凝胶催化剂的活性,通过单因素实验法优化了离子液体凝胶催化剂合成乙酸正龙脑脂的反应条件,得到反应温度为90 ℃,反应时间为6 h,α-蒎烯与冰醋酸的物质的量比为1∶1。实验结果表明,该催化剂对温度产生可逆相变响应,高温时反应体系为均相,保证了催化效率,反应结束后降温凝固成为凝胶并析出。离子液体凝胶的催化活性与酸性离子液体的活性差别不大,重复使用五次后,α-蒎烯转化率保持在75%以上,乙酸正龙脑酯的选择性在8.5%以上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘会茹
张苗苗
徐智策
关键词:  温敏性  离子液体凝胶  催化剂  双网络聚合物  乙酸正龙脑酯    
Abstract: N-bornyl acetate (BA) is widely applied as pharmaceutical intermediate. Inorganic acids are mostly used as catalysts for the synthesis of BA. However, these problems such as poor selectivity, difficult separation of product and catalyst, etc., limit their applications. Ionic liquid have received attention in catalytic esterification due to their advantages. However, the reusability of ionic liquids hinders the application in industry. Thermo-sensitive ionic liquid gels, as a new catalyst, can break through the technical bottleneck of industrialization. In this work, the novel ionic liquid gels were synthesized using poly (vinyl alcohol), tannic acid and acidic ionic liquids. The stability and structure of ionic liquid gels were characterized by Rh, TGA, FTIR,1H NMR, et al. The results showed that ionic liquid gel with high mechanical strength and toughness was a double-network polymer due to the carboxylic ester bond and π-π stacking interaction, which formed by hydrogen bond, imidazole and benzene ring. The synthesis of BA was chosen to evaluate the catalytic activity of ionic liquid gels. The reaction temperature and the reaction time was 90 ℃ and 6 h, respectively. The optimal molar ratio of α-pinene to acetic acid was 1∶1. The results showed that the gel catalysts had thermo-reversibility. At high temperature, the ionic liquid gels transformed to a sol, in which the catalytic reaction performed in a homogeneous sol state; when the temperature decreased, the catalyst became a gel, which endowed the efficient separation of catalyst and product. The catalytic activity of the ionic liquid gels was similar to the ionic liquid. At the optimized conditions, the ionic liquid gels catalyst could be reused for 5 times. The convertion rate of α-pinene remained 75% and selectivity of product was 8.5% above.
Key words:  thermo-sensitivity    ionic liquid gels    catalyst    double-network polymer    N-bornyl acetate
发布日期:  2024-06-25
ZTFLH:  O415  
基金资助: 河北省生物医药联合基金(B2020208090)
通讯作者:  *徐智策,河北科技大学化工学院教授。1999年河北科技大学精细化工专业本科毕业,2004年北京化工大学化学工程硕士毕业,2016年天津大学工业催化博士毕业。目前从事绿色催化方面的相关研究。发表多篇论文,包括Supramolecular Chemistry、RSC Advances、Supramolecular Chemistry、Coordination Chemistry Reviews等。xujinghan2004@126.com   
作者简介:  刘会茹,石家庄学院化工学院副教授。1999年河北科技大学高分子材料与工程专业本科毕业,2003年河北科技大学化学工艺专业硕士毕业,2007年天津大学工业催化博士毕业。目前从事绿色催化方面的相关研究。发表多篇论文及专利。
引用本文:    
刘会茹, 张苗苗, 徐智策. 离子液体凝胶催化剂在合成乙酸正龙脑酯中的应用[J]. 材料导报, 2024, 38(11): 23080135-7.
LIU Huiru, ZHANG Miaomiao, XU Zhice. Ionic Liquid Gels as Novel Catalysts in Application of Esterification for N-bornyl Acetate. Materials Reports, 2024, 38(11): 23080135-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080135  或          http://www.mater-rep.com/CN/Y2024/V38/I11/23080135
1 Li X H, Jin L Y, Yue J J, et al. Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2021, 27(5), 131 (in Chinese).
李晓花, 金玲钰, 岳建军. 中医药导报, 2021, 27(5), 131.
2 Wang X D, Shi W Y, Ma A, et al. Acta Anatomica Sinica, 2008, 39(5), 734 (in Chinese).
王晓丹, 史万玉, 马爱团, 等. 解剖学报, 2008, 39(5), 734.
3 Yang H, Zhao R, Chen H, et al. Iubmb Life, 2014, 66(12), 854.
4 Li X G, Ye F Q, Xu H H. West China Journal of Pharmaceutical Sciences, 2001, 16(5), 356 (in Chinese).
李晓光, 叶富强, 徐鸿华. 华西药学杂志, 2001, 16(5), 356.
5 Karan T, Yildiz I, Aydin A, et al. Records of Natural Products, 2018, 12(3), 273.
6 Zheng K C, Lin S S, Fu S H, et al. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1996, 35(4), 59 (in Chinese).
郑康成, 林森树, 符圣和, 等. 中山大学学报(自然科学版), 1996, 35(4), 59.
7 Liu X Q, Zhang H, Zheng H D, et al. Chemical Industry and Enginee-ring Progress, 2013, 32(7), 1573 (in Chinese).
刘小琴, 张煌, 郑辉东, 等. 化工进展, 2013, 32(7), 1573.
8 Chen S H, Jiang M Y, Huang X. Biomass Chemical Engineering, 2010, 44(3), 36 (in Chinese).
陈尚和, 江美玉, 黄兴. 生物质化学工程, 2010, 44(3), 36.
9 Liu T C, Ning P, Wang Y M, et al. Biomass Chemical Engineering, 2007, 41(3), 27 (in Chinese).
刘天成, 宁平, 王亚明, 等. 生物质化学工程, 2007, 41(3), 27.
10 Ji K H, Liu S W, Jie C X, et al. Chemistry and Industry of Forest Pro-ducts, 2008, 28(4), 34 (in Chinese).
季开慧, 刘仕伟, 解从霞, 等. 林产化学与工业, 2008, 28(4), 34.
11 Liu X F. Study on esterification ofα-pinene system over acidic heteropoly ionic liquids. Master's Thesis, Qingdao University of Science & Techno-logy, China, 2016 (in Chinese).
刘笑凡. 酸性杂多类离子液体催化α-蒎烯乙酯化反应体系的研究. 硕士学位论文, 青岛科技大学, 2016.
12 Tamate R, Hashimoto K, Li X, et al. Polymer, 2019, 178, 121694.
13 Takeno H, Inoguchi H, Hsieh W C. Materials Today Communications, 2022, 31, 103495.
14 Cowan M G, Gin D L, Noble R D. Accounts of Chemical Research, 2016, 49(4), 724.
15 Jamil R, Silvester D S. Current Opinion in Electrochemistry, 2022, 35, 101046.
16 Ding Y, Zhang J, Chang L, et al. Advanced Materials, 2017, 29(47), 1704253.
17 Ramesh S, Liew C W. Ceramics International, 2012, 38(4), 3411.
18 Lee S Y, Yang M, Seo J H, et al. ACS Applied Materials & Interfaces, 2021, 13(2), 2189.
19 Minakuchi N, Hoe K, Yamaki D, et al. Langmuir, 2012, 28(25), 9259.
20 Tamate R, Hashimoto K, Horii T, et al. Advanced Materials, 2018, 30(36), 1802792.
21 Giuntoli A, Puosi F, Leporini D, et al. Science Advances, 2020, 6(17), eaaz0777.
22 Zhao W, Ding H, Zhu J, et al. Journal of Bioresources and Bioproducts, 2020, 5(4), 291.
23 Yang J, Zhang S, Sun W, et al. University Chemistry, 2019, 34(1), 82.
24 Rajagopal S K, Salini P S, Hariharan M. Crystal Growth & Design, 2016, 16(8), 4567.
25 Yuan X M. Synthesis, characterization and gas chromatogrophy of the main compounds in crude bornyl oxalate. Master's Thesis. Chinese Academy of Forestry, China, 2016 (in Chinese).
袁晓敏. 冰片合成酯液中主要化合物的合成、表征及气相色谱分析方法研究. 硕士学位论文, 中国林业科学研究院, 2016.
[1] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[2] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[3] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[4] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[5] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[6] 赵冬梅, 赵有璟, 王敏. 双极膜水解离性能改进研究进展[J]. 材料导报, 2024, 38(10): 23050035-9.
[7] 李聪, 余冉, 刘太楷, 邓春明, 邓畅光, 刘敏. 基于3D打印技术的甲烷水蒸气重整研究[J]. 材料导报, 2024, 38(10): 23020015-9.
[8] 宋冬梅, 郑秋燕, 潘廷仙, 胡长刚, 同鑫, 田娟. ZIFs材料对Fe/N/C催化剂氧还原性能的影响[J]. 材料导报, 2024, 38(10): 22100278-7.
[9] 黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎. 泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能[J]. 材料导报, 2024, 38(10): 23010042-7.
[10] 张玉金, 杨琦, 张瑞, 高宇新, 拜永孝. 硅胶载体的制备及在聚烯烃催化剂领域中的应用[J]. 材料导报, 2024, 38(1): 22040363-11.
[11] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[12] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[13] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[14] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[15] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed