Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 23010014-9    https://doi.org/10.11896/cldb.23010014
  金属与金属基复合材料 |
Al-Cr-Fe-Mn-Ni高熵合金中的L21相的相稳定性及其性能研究
易慧1, 吴长军1,2,*, 周琛1, 刘亚1, 陆晓旺3, 苏旭平1,2
1 常州大学材料科学与工程学院,江苏省材料表面科学与技术重点实验室,江苏 常州 213164
2 常州大学光伏科学与工程江苏协同创新中心,江苏 常州 213164
3 盐城工学院材料科学与工程学院,江苏 盐城 224051
Phase Stability of L21 in Al-Cr-Fe-Mn-Ni High Entropy Alloys and Properties Study
YI Hui1, WU Changjun1,2,*, ZHOU Chen1, LIU Ya1, LU Xiaowang3, SU Xuping1,2
1 Jiangsu Key Laboratory of Materials Surface Science and Technology, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
2 Jiangsu Collaborative InnovationCenter of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
3 School of Material Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China
下载:  全 文 ( PDF ) ( 32552KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为开发兼具良好强度与塑性的BCC基高熵合金,可引入与基体共格的B2或L21相。L21相具有更好的抗蠕变性能,有望在高温环境中得到应用。但是,目前对BCC型高熵合金中L21相的存在规律、相稳定性及其对合金性能的影响还缺乏深入的研究。为此,本工作研究了电弧熔炼制备的铸态Al0.5Cr2.5-xFeMnxNi(x=0.5~1.75)、Al0.75Cr2.25-yFeMnyNi(y=0.25~1.5)、AlCr2-zFeMnzNi(z=0.5~1.5)高熵合金的相组成,及800 ℃或1 000 ℃真空退火120 h对合金组织和相组成的影响。研究表明,这些合金中L21相的成分特征由40%~50%(原子分数)Ni和15%~20%(原子分数)Al、Mn组成。L21相只存在于Al含量为10%~15%(原子分数)的合金中,且多以BCC+L21两相共存,获得的组织为编织网状的调幅分解组织。当Al含量达到20%(原子分数)后,合金则由BCC+B2两相构成。L21相的存在会使BCC型XRD特征峰出现明显的峰分裂。经过800 ℃或1 000 ℃退火后,合金中L21相仍能稳定存在,合金显微组织发生粗化并会形成σ或FCC相。铸态合金的硬度随Mn含量的增加而降低,含L21相的合金的硬度在463HV~558HV范围内。800 ℃退火会使含5%~15%(原子分数)Mn的合金硬度降低70HV~100HV,但由于硬质σ相的析出,含20%~30%(原子分数)Mn的合金硬度提高200HV以上;1 000 ℃退火后,由于软质FCC相的形成,合金的硬度略有降低,这些结果将为BCC型高熵合金的设计奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易慧
吴长军
周琛
刘亚
陆晓旺
苏旭平
关键词:  Al-Cr-Fe-Mn-Ni  高熵合金  L21  硬度  相稳定性    
Abstract: To obtain the BCC-based high entropy alloys with good combination of strength and plasticity, introducing the coherent precipitation B2 or L21 phase into the matrix has become a research hotspot. The creep resistance of L21 phase at high temperature is better than B2 phase, which is expected to be used in high temperature environment. However, the existence rule of L21 phase in BCC high entropy alloy, phase stability and its effect on the properties of the alloy was still lacking. Therefore, in the present work, series of Al0.5Cr2.5-xFeMnxNi (x=0.5—1.75), Al0.75Cr2.25-yFeMnyNi (y=0.25—1.5) and AlCr2-zFeMnz Ni (z=0.5—1.5) alloys were prepared by vacuum arc melting method. The effect of annealing at 800 ℃ or 1 000 ℃ for 120 h on the microstructure and phase composition of the alloys were investigated. The composition characte-ristics of the L21phase in these alloys are detected to be 40at%—50at% Ni, 15at%—20at% Al and Mn. BSE-EDS, XRD and TEM results show that L21 phase forms only when the alloys contain 10at%—15at% Al, and the alloy is mostly composed of BCC+L21 two phases. The BCC and L21 phases microstructure exhibits a weave-like spinodal decomposition. When Al content reaches 20at%, the alloy is composed of two phases of BCC+B2. Due to the existence of L21 phase, there is a obvious peak splitting in XRD pattern. After being annealed at 800 ℃ or 1 000 ℃, the L21 phase still stably exists, and the microstructure of the alloy coarsened and the σ or FCC phase formed. It is found that the hardness of as-cast alloys decreases with the increase of Mn content, and the hardness of alloy containing L21 phase is in the range of 463HV—558HV. Annealing at 800 ℃ reduces the hardness of alloy with 5at%—15at%Mn by 70HV—100HV, but increases the hardness of alloy with 20at%—30at% Mn by more than 200HV, due to the precipitation of hard σ phase. After annealing at 1 000 ℃, the hardness of the alloy decreases slightly due to the formation of soft FCC phase. These results will lay a foundation for the design of BCC high entropy alloys.
Key words:  Al-Cr-Fe-Mn-Ni    high entropy alloys    L21 phase    hardness    phase stability
发布日期:  2024-06-25
ZTFLH:  TG113.12  
基金资助: 国家自然科学基金(51771035;52271005)
通讯作者:  *吴长军,常州大学材料科学与工程学院教授、硕士研究生导师。2006年湘潭大学金属材料工程专业本科毕业,2011年湘潭大学材料学专业博士毕业。2015—2016年在韩国浦项科技大学进行博士后研究工作。目前主要从事高性能金属材料、高熵合金、合金相图及材料设计、材料表面处理等方面的研究工作。获国家发明专利授权20余项,发表论文80余篇,包括Journal of Alloys and Compounds、Transactions of Nonferrous Metals Society of China、CALPHAD、Vacuum等。wucj@cczu.edu.cn   
作者简介:  易慧,2020年6月于湖南人文科技学院获得学士学位。现为常州大学材料科学与工程学院硕士研究生,在吴长军教授的指导下进行研究。目前主要研究领域为高熵合金。
引用本文:    
易慧, 吴长军, 周琛, 刘亚, 陆晓旺, 苏旭平. Al-Cr-Fe-Mn-Ni高熵合金中的L21相的相稳定性及其性能研究[J]. 材料导报, 2024, 38(11): 23010014-9.
YI Hui, WU Changjun, ZHOU Chen, LIU Ya, LU Xiaowang, SU Xuping. Phase Stability of L21 in Al-Cr-Fe-Mn-Ni High Entropy Alloys and Properties Study. Materials Reports, 2024, 38(11): 23010014-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010014  或          http://www.mater-rep.com/CN/Y2024/V38/I11/23010014
1 Murty B S, Yeh J W, Ranganathan S. In:High entropy alloys, Oxford, Butterworth-Heinemann, 2014, pp.12.
2 Zhu J M, Meng J L, Liang J L. Rare Metals, 2014, 35(5), 385.
3 Shaysultanov D G, Stepanov N D, Kuznetsov A V, et al. JOM, 2013, 65(12), 1815.
4 Zhang K B, Fu Z Y, Zhang J Y, et al. Journal of Alloys and Compounds, 2010, 502(2), 295.
5 Tung C C, Yeh J W, Shun T T, et al. Materials Letters, 2007, 61(1), 1.
6 Chen M, Yuan L, Li Y. Acta Metallurgica Sinica, 2007, 43(10), 1020.
7 Tong C J, Chen Y L, Yeh J W, et al. Metallurgical and Materials Tran-sactions A, 2005, 36(4), 881.
8 Wang Y P, Li B S, Ren M X, et al. Materials Science and Engineering:A, 2008, 491(1), 154.
9 Shun T T, Hung C H, Lee C F. Journal of Alloys and Compounds, 2010, 495(1), 55.
10 Butler T M, Weaver M L. Journal of Alloys and Compounds, 2016, 674, 229.
11 Zhang C, Zhang F, Diao H, et al. Materials & Design, 2016, 109, 425.
12 Dong Y, Lu Y P, Kong J R, et al. Journal of Alloys and Compounds, 2013, 573, 96.
13 Nong Z S, Zhu J C, Zhao R D. Intermetallics, 2017, 86, 134.
14 Zhu Z G, Ma K H, Wang Q, et al. Intermetallics, 2016, 79, 1.
15 Wong S K, Shun T T, Chang C H, et al. Materials Chemistry and Phy-sics, 2018, 210, 146.
16 Shaysultanov D G, Salishchev G A, Ivanisenko Y V, et al. Journal of Alloys and Compounds, 2017, 705, 756.
17 Bai L, Wang Y Z, Lyu Y K, et al. Materials Reprots, 2020, 34(17), 17072 (in Chinese).
白莉, 王宇哲, 吕煜坤, 等. 材料导报, 2020, 34(17), 17072.
18 Tsao L C, Chen C S, Chu C P. Materials & Design, 2012, 36, 854.
19 Zhang L J, Guo K, Tang H, et al. Materials Science and Engineering:A, 2019, 757, 160.
20 Masemola K, Malatji N, Patricia Popoola A. Materials Today:Procee-dings, 2020, 28, 898.
21 Stepanov N D, Shaysultanov D G, Chernichenko R S, et al. Journal of Alloys and Compounds, 2019, 770, 194
22 Munitz A, Meshi L, Kaufman M J. Materials Science and Engineering:A, 2017, 689, 384.
23 Masemola K, Popoola P, Malatji N. Journal of Materials Research and Technology, 2020, 9(3), 5241.
24 Chuang M H, Tsai M H, Wang W R, et al. Acta Materialia, 2011, 59(16), 6308.
25 Jensen J K, Welk B A, Williams R E A, et al. Scripta Materialia, 2016, 121, 1.
26 Xin S S, Wang Z H, Li C L, et al. Materials Reprots, 2020, 34(7), 8 (in Chinese).
信思树, 王镇华, 李春玲, 等. 材料导报, 2020, 34(7), 8.
27 Li H C, Wang J, Yuan R H, et al. Materials Reprots, 2021, 35(17), 17010 (in Chinese).
李洪超, 王军, 袁睿豪, 等. 材料导报, 2021, 35(17), 17010.
28 Lu Z P, Jiang S H, He J Y, et al. Acta Metallurgica Sinica, 2016, 52 (10), 1183 (in Chinese).
吕昭平, 蒋虽合, 何骏阳, 等. 金属学报, 2016, 52(10), 1183.
29 Lu L, Shen Y, Chen X, et al. Science, 2004, 304(5669), 422.
30 Lu K, Lu L, Suresh S. Science, 2009, 324(5925), 349.
31 He J Y, Liu W H, Wang H, et al. Acta Materialia, 2014, 62, 105.
32 Strutt P R, Polvani R S, Ingram J C. Metallurgical Transactions A, 1976, 7(1), 23.
33 Lin C W, Tsai M H, Tsai C W, et al. Materials Science and Technology, 2015, 31(10), 1165.
34 Li C, Ma Y, Hao J, et al. Materials Science and Engineering:A, 2018, 737, 286.
35 Ji Y, Zhang L, Lu X, et al. Intermetallics, 2021, 138, 107339.
36 Munitz A, Salhov S, Guttmann G, et al. Materials Science and Enginee-ring:A, 2019, 742, 1.
37 Baik S I, Wang S Y, Liaw P K, et al. Acta Materialia, 2018, 157, 142.
38 Song G, Hong S J, Lee J K, et al. Scripta Materialia, 2019, 161, 18.
39 Wu C, Zhou C, Liu Y, et al. Vacuum, 2022, 199, 110934.
40 Wang M, Lu Y, Wang T, et al. Scripta Materialia, 2021, 204, 114132.
41 Yang T, Xia S, Liu S, et al. Materials Science and Engineering:A, 2015, 648, 15.
42 Sun Y, Wu C, Peng H, et al. Journal of Phase Equilibria and Diffusion, 2019, 40(5), 706.
43 Ananiadis E, Lentzaris K, Georgatis E, et al. Metals and Materials International, 2019, 26(6), 793.
44 Kao Y F, Chen T J, Chen S K, et al. Journal of Alloys and Compounds, 2009, 488(1), 57.
45 Tsai M H, Tsai K Y, Tsai C W, et al. Materials Research Letters, 2013, 1(4), 207.
46 Chen S T, Tang W Y, Kuo Y F, et al. Materials Science and Enginee-ring:A, 2010, 527(21), 5818.
47 Acet M, Duman E, Wassermann E F, et al. Journal of Applied Physics, 2002, 92(7), 3867.
[1] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[2] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[3] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[4] 张明晨, 郭瑞鹏, 张勇. 高熵硬质合金WC-AlCo0.4CrFeNi2.7的制备及表征[J]. 材料导报, 2024, 38(4): 22060288-6.
[5] 曹炜鹏, 李杰, 孙小斌, 吴凯迪, 万德成, 冯运莉. CoCrFeMnNi系高熵合金制备技术研究现状[J]. 材料导报, 2024, 38(11): 23090146-12.
[6] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[7] 邓妍, 洪森, 曹湘杰, 蒋曜年, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对羰基铁基吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(1): 22040113-6.
[8] 蔡成林, 李泽贤, 印峰. 维氏硬度试验中的视觉检测算法研究综述[J]. 材料导报, 2023, 37(8): 21070036-10.
[9] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[10] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[11] 张明山, 田亚强, 郑小平, 张源, 王俊升, 陈连生. 基于CALPHAD计算的铸造Al-Si-Cu-Mg合金热处理工艺优化研究[J]. 材料导报, 2023, 37(22): 22050146-6.
[12] 黄留飞, 孙耀宁. 高强韧高熵合金的变形行为研究进展[J]. 材料导报, 2023, 37(20): 22030168-10.
[13] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[14] 王整, 蔡召兵, 陈飞寰, 董颖辉, 张坡, 陈娟, 古乐, 曾良才. 环境和法向载荷对(TiVCrAlMo)N高熵合金薄膜摩擦学性能的影响[J]. 材料导报, 2023, 37(18): 22050049-7.
[15] 詹子雄, 黄希, 韦丽华, 杨西亚, 李清山, 李小燕. 比较不同压头提取离子辐照后低活化铁素体/马氏体钢屈服强度的差异[J]. 材料导报, 2023, 37(18): 22010165-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed