Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22040279-6    https://doi.org/10.11896/cldb.22040279
  高分子与聚合物基复合材料 |
轻质玄武岩纤维高延性水泥基复合材料研制及导热性能研究
张文雅, 周健*, 李辉, 徐名凤
河北工业大学土木与交通学院,天津 300401
Study of Lightweight Basalt Fiber Reinforced Strain-hardening Cementitious Composites and Its Thermal Conductivity Properties
ZHANG Wenya, ZHOU Jian*, LI Hui, XU Mingfeng
School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
下载:  全 文 ( PDF ) ( 5568KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高延性纤维增强水泥基防火材料(FR-ECC)具有遇火不燃性、高温不分解有毒气体、耐久性良好、延性高、抗裂性能好等优点,近年来得到了广泛关注和研究。常规FR-ECC的制备采用有机纤维为增韧组分,而有机纤维在高温条件下纤维分解气化易导致防火材料延性下降,造成开裂失效,制约了FR-ECC的应用。本工作以耐高温性能优异的铝酸盐水泥和玄武岩纤维(BF)作为原材料,设计研发轻质玄武岩纤维水泥基复合材料(LWBF-ECC),并研究该材料高温后力学性能及热学性能的演化规律。试验分析了LWBF-ECC在常温和高温后的干密度变化、物相变化、单轴抗拉强度和抗压强度变化规律,并研究了其在不同过火温度下延性及导热系数的变化规律。研究表明:在常温环境下,LWBF-ECC延性可达0.82%,是常规钢结构表面喷射防火材料的80倍;由于BF耐高温性能优异,高温下仍能充分发挥桥接作用,在过火温度低于400 ℃时,LWBF-ECC材料拉伸均表现为应变硬化,高温下仍保持一定延性,100、200和400 ℃时极限应变分别为0.78%、0.32%和0.18%;随着温度升高,LWBF-ECC干密度降低,孔隙率升高,同时导热系数下降,高温下胶凝材料水化物转变和结晶水损失导致水泥含量越多,质量损失越大,干密度降低越明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文雅
周健
李辉
徐名凤
关键词:  高延性水泥基复合材料  玄武岩纤维  防火  轻质  导热性能    
Abstract: High ductility fiber reinforced fire-resistive engineered cementitious composites (FR-ECC) have the advantages of fire inflammability, non-decomposition of toxic gases at high temperatures, and good durability. At the same time, it has the advantages of high ductility and good crack resistance, and has been widely concerned and studied in recent years. Conventional FR-ECC uses organic fiber, which is decomposed and gasification at high temperature, resulting in the ductility reduction and cracking of refractories, which restricts the practical application of FR-ECC. In this work, aluminate cement with excellent high temperature resistance and basalt fiber (BF) were used as raw materials to design and develop lightweight high ductility basalt fiber reinforced engineered cementitious composites (LWBF-ECC), and the evolution law of mechanical and thermal properties of the material after high temperature was studied. The variation rules of dry density, phase change, uniaxial tensile strength and compressive strength of LWBF-ECC at room temperature and elevated temperature were studied, and the variation rules of ductility and thermal conductivity at different temperatures were also studied. The results show that the ductility of LWBF-ECC can reach 0.82% at room temperature, which is 80 times of the conventional sprayed fire-resistant material on the surface of steel structure. Due to BF’s excellent high temperature resistance, it can still give full play to the bridging function at high temperature. When the exposure temperature is below 400 ℃, LWBF-ECC material shows strain hardening in tensile, and it still retains a certain ductility at high temperature. The ultimate strains at 100, 200 and 400 ℃ are 0.78%, 0.32% and 0.18%, respectively. With the temperature elevated, LWBF-ECC dry density decreases, porosity increases and thermal conductivity decreases. The hydration change and water of crystallization loss of cementitious materials at high temperature leads to the higher cement content, the more mass loss, and the more obvious dry density decrease.
Key words:  strain-hardening cementitious composites    basalt fiber    fire resistance    lightweight    thermal conductivity property
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TU545  
基金资助: 国家自然科学基金(51878238);河北省自然科学基金(E2021202037)
通讯作者:  *周健,河北工业大学“元光学者”特聘教授、博士研究生导师。2011年毕业于荷兰代尔伏特理工大学,获博士学位,曾赴美国密歇根大学访问研究。主要致力于建筑材料基因组工程研究。主持和参与国家自然科学基金、“十二五”国际合作、“十二五”科技支撑和“十三五”重点研发等国家级科研项目6项,省部级科研项目2项。发表学术论文40余篇,其中SCI论文10余篇,获发明专利8项,主编建材行业标准1部。zhoujian@hebut.edu.cn   
作者简介:  张文雅,河北工业大学土木与交通学院硕士研究生,在周健教授的指导下进行研究。目前主要研究领域为高延性水泥基复合材料。
引用本文:    
张文雅, 周健, 李辉, 徐名凤. 轻质玄武岩纤维高延性水泥基复合材料研制及导热性能研究[J]. 材料导报, 2023, 37(20): 22040279-6.
ZHANG Wenya, ZHOU Jian, LI Hui, XU Mingfeng. Study of Lightweight Basalt Fiber Reinforced Strain-hardening Cementitious Composites and Its Thermal Conductivity Properties. Materials Reports, 2023, 37(20): 22040279-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040279  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22040279
1 Kodur V, Dwaikat M. Engineering Structures, 2009, 31(2), 369.
2 Chen S, Jiang L, Wu L, et al. Construction and Building Materials, 2019, 204, 659.
3 Ming C Y, Sulong N. Materials & Design, 2012, 34, 719.
4 Zhou X, D’Aniello S P, Yu H Z. Fire Safety Journal, 2012, 54(54), 36.
5 Wang L, Dong Y, Zhang C, et al. Fire Technology, 2015, 51(3), 627.
6 Goode M G. National Institute of Standards and Technology, 2012, 4, 872.
7 Kodur V, Shakya A M. Fire Safety Journal, 2013, 61, 314.
8 Carino N J, Starnes M A, Gross J L, et al. National Construction Safety Team Act Reports, 2005, 1, 1.
9 Arablouei A, Kodur V. International Journal of Impact Engineering, 2015, 83, 11.
10 Arablouei A, Kodur V. Engineering Structures, 2016, 116, 56.
11 Arablouei A, Kodur V. Engineering Fracture Mechanics, 2014, 121, 67.
12 Wang W Y, Li G Q. Journal of Constructional Steel Research, 2009, 65(6), 1392.
13 Braxtan N L, Pessiki S P. Journal of Structural Engineering, 2011, 137(9), 946.
14 Li V C, Leung C. Journal of Engineering Mechanics, 1992, 118(11), 2246.
15 Maalej M, Li V C. Journal of Materials in Civil Engineering, 1994, 6(4), 513.
16 Weimann M B, Li V C. Restoration of Buildings & Monuments, 2003, 9(5), 513.
17 Zhang Q, Ranade R, Li V C. ACI Materials Journal, 2014, 111(6), 517.
18 Da Silva M M, Toledo F R D, Fairbairn E M R. Construction and Buil-ding Materials, 2015, 94, 437.
19 Wu C, Li V C. Composites Part B Engineering, 2017, 110, 255.
20 Bhat P S, Chang V, Li M. Construction and Building Materials, 2014, 69, 370.
21 Yu J, Lin J, Zhang Z, et al. Construction and Building Materials, 2015, 99, 82.
22 Singha K. International Journal of Textile Science, 2012, 1(4), 19.
23 Dhand V, Mittal G, Rhee K Y, et al. Composites Part B Engineering, 2015, 73, 166.
24 Song S. Study on mechanical properties of basalt fiber reinforced high ductility cement matrix composites at room temperature and high temperature. Master’s Thesis, Hebei University of Technology, China, 2019(in Chinese).
宋嵩. 玄武岩纤维增强高延性水泥基复合材料常温与高温力学性能研究. 硕士学位论文, 河北工业大学, 2019.
25 Lee N K, Koh K T, Park S H, et al. Cement and Concrete Research, 2017, 102, 109.
26 Yu K Q, Dai J G, Lu Z D, et al. Journal of Materials in Civil Engineering, 2014, 27(10), 04014268.
27 Bouguerra A, Ledhem A. Cement and Concrete Research, 1998, 28(8), 1179.
28 Zhang Y, Gu W J, Liu K, et al. China’s Refractories, 2019, 28(2), 27.
[1] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[2] 丁聪, 任金明, 王永明, 李新宇, 俞兵, 郭丽萍. 高延性水泥基复合材料用短切PVA纤维的长度优选研究[J]. 材料导报, 2023, 37(13): 21080025-8.
[3] 张建伟, 佘希林, 刘嘉麒, 张蕾. 连续玄武岩纤维新材料的制备、性能及应用[J]. 材料导报, 2023, 37(11): 22010106-7.
[4] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[5] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[6] 霍泳霖, 霍冀川, 张行泉, 秦桂璐. 玄武岩的开发利用进展[J]. 材料导报, 2022, 36(6): 20080281-11.
[7] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[8] 蔡中盼, 田茂诚, 张冠敏. 不同层数和尺寸的石墨烯对润滑油热物性能的影响[J]. 材料导报, 2022, 36(3): 20100213-8.
[9] 李文博, 张双侠, 史倩倩, 于明明. 新疆严寒区UV老化下的沥青路面抗损劣性能研究[J]. 材料导报, 2022, 36(21): 21100120-6.
[10] 林长宇, 王启睿, 杨立云, 吴云霄, 李芹涛, 谢焕真, 汪自扬, 张飞. 玄武岩纤维活性粉末混凝土在冲击载荷下的力学行为及本构关系[J]. 材料导报, 2022, 36(19): 21050237-7.
[11] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[12] 郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展[J]. 材料导报, 2022, 36(18): 20110092-16.
[13] 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 21030274-6.
[14] 岳世伟, 逄显娟, 牛一旭, 黄素玲. 载荷和速度对聚醚醚酮(PEEK)复合材料摩擦性能的影响[J]. 材料导报, 2022, 36(16): 21040271-7.
[15] 胡勇, 刘飞, 刘员员, 赵龙志, 焦海涛, 唐延川, 刘德佳. AlMgLi0.5Zn0.5Cu0.2轻质高熵合金的组织和耐腐蚀性研究[J]. 材料导报, 2022, 36(14): 22010093-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed