Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22030056-7    https://doi.org/10.11896/cldb.22030056
  金属与金属基复合材料 |
钢铁冶金熔渣电导率测试技术及应用进展
王海川1,2, 张晨1, 雷杰1,2, 吴婷1,2,*
1 安徽工业大学冶金工程学院,安徽 马鞍山 243032
2 安徽工业大学冶金减排与资源综合利用教育部重点实验室,安徽 马鞍山 243002
Measurement Technological and Application Progress on the Electrical Conductivity of Ferrous Metallurgy Slag
WANG Haichuan1,2, ZHANG Chen1, LEI Jie1,2, WU Ting1,2,*
1 School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243032, Anhui, China
2 Key Laboratory of Metallurgical Emission Reduction & Resource Recycling (Ministry of Education), Anhui University of Technology,Ma’anshan 243002, Anhui, China
下载:  全 文 ( PDF ) ( 4909KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为钢铁冶金过程中必不可少的物质,冶金熔渣发挥关键作用,电导率是其重要特性之一。对于高温熔渣而言,其电导率与熔渣中阳离子迁移数量和阴离子聚合物复杂程度密切相关,故通过熔渣电导率测试可以了解熔渣结构,为熔渣组分设计与性能调控提供理论依据。
由于熔渣电导率的测定方法繁杂且优劣不一,目前关于熔渣电导率的研究较为缺乏。就电导率测定设备而言,主要有数字电桥和电化学工作站。其中,数字电桥具有测量快速的特点,但电导池内存在电容、电感等因素会对实验结果产生影响;电化学工作站测试时间较长、测试过程较为复杂。但是,基于电化学工作站的电化学阻抗谱法可以将电导池内的容抗和感抗以等效电路的形式体现出来,故精确度更高;而基于电化学工作站的计时电流法可以测量出高温熔体的离子迁移数量和电子迁移数量,从而可更加深入地研究高温熔体电导率的本质。就电导率测定方法而言,有相对测量法和绝对测量法。其中,相对测量法是在测量待测熔体前,使用已知电导率的标准溶液或熔体对电导池常数进行标定,但由于电导池差异,存在测量精度不高、操作难度较大、适用范围受限制等缺点;绝对测量法无需对电解池常数进行标定,但在测量过程中,需对高温熔体进行多次测量电阻,测量过程繁琐,且计算复杂。
基于冶金熔渣各性能的内在联系,电导率测试在研究高温熔渣的析晶、玻璃化转变温度、熔点和同化性方面发挥重要作用。但是,用已有方法测量熔渣电导率时,若使用直流电,会引起严重的浓差极化;若使用较高电压,很有可能使得熔渣被电解,引起化学极化。两者均会造成熔渣组分分布不均,影响测试结果,因此,在测试过程应使用交流电来减小实验误差。
本文通过综述高温熔渣电导率测试技术及应用进展,对其测试原理、设备及方法、应用进行概括总结,分析各种测试方法的优缺点,为钢铁冶金熔渣电导率的精确测量提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王海川
张晨
雷杰
吴婷
关键词:  电导率  钢铁冶金熔渣  设备和方法  电导率测试  应用    
Abstract: Slag is an indispensable material and is important in the iron-and steel-making process. The electrical conductivity of slag is one of its essential properties. Because the electrical conductivity of high-temperature molten slag is closely related to the cation number and network polymerization, the structure of molten slag can be revealed by measuring its conductivity, which provides a theoretical basis for composition design and performance regulation.
Owing to the complexity, as well as the uneven superior or inferior of the methods of measuring electrical conductivity, current research on the molten slag conductivity is limited. The main instruments for electrical conductivity measurement are the digital electric bridge and the electroche-mical workstation. Although the digital electric bridge measurement is faster compared to the electrochemical workstation measurement, the capacitance, inductance, and other factors in the conductivity cell inevitably affect the experimental results. Conversely, the electrochemical workstation test is a slow and complex process. However, the electrochemical impedance spectroscopy method, which is based on electrochemical measurement methodology, can reflect the capacitance and inductance in the conductance cell in the form of an equivalent circuit, thereby affording a higher accuracy. Moreover, chronoamperometry, which is derived from the electrochemical workstation methodology, can estimate the number of ion and electron migration through a high-temperature melt to comprehensively study the mechanisms of high-temperature melt conductivity. Conductivity measurement methods are categorized into two types: relative and absolute methods. The relative measurement method uses a standard solution or melt with a known conductivity to calibrate the conductivity cell constant before measuring the conductivity of the melt. However, owing to differences in conductivity cells, the precision of the measurement results is questionable; the operation is laborious, and the application scope is limited. Concerning the absolute measurement method, the calibration of the electrolytic cell constant is not required. However, during the measurement process, the resistance of high-temperature melt should be measured repeatedly; consequently, the measurement process is cumbersome and has complex calculations.
Based on the intrinsic relationship between the properties of molten slag, the conductivity test is essential for studying the crystallization, glass transition temperature, melting point, and assimilation of high-temperature molten slag. However, when the molten slag conductivity is measured using the existing methods, the use of a DC voltage results in severe concentration polarization. Whereas the application of a high voltage is likely to make the molten slag electrolytic and cause chemical polarization. Both conditions will contribute to the uneven distribution of molten slag components and affect the test results. Therefore, the use of an AC voltage can reduce the experimental error.
This paper reviews the measurement technology and application progress in the field of high-temperature molten slag conductivity. Furthermore, the test principles, equipment, methods, and applications are summarized. The advantages and disadvantages of various test methods have been analyzed to provide theoretical guidance for the accurate measurement of the electrical conductivity of metallurgical molten slag.
Key words:  electrical conductivity    ferrous metallurgy molten slag    equipment and methods    electrical conductivity tests    application
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TF701  
基金资助: 国家自然科学基金(51804004);安徽省教育厅自然科学基金(KJ2021A0358)
通讯作者:  *吴婷,安徽工业大学冶金工程学院讲师、硕士研究生导师。目前主要从事冶金熔渣结构及性能、冶金物理化学、热力学数据测定与计算等方面的研究与教学工作。主持或参与FactSage炼钢国际联合项目(FactSagesteelmaking consortium project)、国家自然科学基金联合基金重点项目2项、国家自然科学基金青年基金1项、重庆市自然科学基金项目1项、以及多项校企合作项目,已独立或合作发表SCI收录期刊论文20余篇。wuting@ahut.edu.cn   
作者简介:  王海川,安徽工业大学冶金工程学院教授、博士研究生导师。目前主要从事冶金物理化学、钢铁冶金新工艺与新技术等方面的研究和教学工作,多年来围绕钢铁冶炼、特殊外场在冶金中的应用等领域主持国家自然科学基金面上项目2项、参与3项、国家科技支撑计划子课题1项、承担安徽省科技攻关重点项目子课题1项,以及多项校企合作研究项目等,已经独立或合作发表学术研究论文150余篇,SCI、EI收录45篇。
引用本文:    
王海川, 张晨, 雷杰, 吴婷. 钢铁冶金熔渣电导率测试技术及应用进展[J]. 材料导报, 2023, 37(20): 22030056-7.
WANG Haichuan, ZHANG Chen, LEI Jie, WU Ting. Measurement Technological and Application Progress on the Electrical Conductivity of Ferrous Metallurgy Slag. Materials Reports, 2023, 37(20): 22030056-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030056  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22030056
1 Bockris J O, Kitchener J A, Ignatowicz S, et al. Transactions of the Faraday Society, 1952, 48, 75.
2 Segers L, Fontana A, Winand R. Canadian Metallurgical Quarterly, 1983, 22(4), 429.
3 Sarkar S B. ISIJ International, 1989, 29(4), 348.
4 Wu T. Study on microstructure and macroproperty of mould fluxes with low-reactivity. Ph. D. Thesis, Chongqing University, China, 2017(in Chinese).
吴婷. 低反应性连铸保护渣熔体的微结构特征及宏观性能研究. 博士学位论文, 重庆大学, 2017.
5 Gao J X. Fundamental research on the component, structure and properties of mold fluxes containing Al2O3 and CaF2. Ph. D. Thesis, Chongqing University, China, 2016(in Chinese).
高金星. 含Al2O3和CaF2连铸结晶器保护渣成分、结构和性能的基础研究. 博士学位论文, 重庆大学, 2016.
6 Zhu J H, Hou Y, Zheng W W, et al. ISIJ International, 2019, 59(3), 427.
7 Pang Z, Lv X, Yan Z, et al. Metallurgical and Materials Transactions B, 2019, 50(1), 385.
8 Eric R H. Journal of the Southern African Institute of Mining and Metallurgy, 2004, 104(9), 499.
9 Farahat R, Eissa M, Megahed G, et al. ISIJ International, 2019, 59(2), 216.
10 Pauna H, Willms T, Aula M, et al. Metallurgical and Materials Transactions B, 2020, 51, 1646.
11 Huang X G. Ferrous metallurgy principle, Metallurgical Industry Press, China, 2011, pp. 321(in Chinese).
黄希祜. 钢铁冶金原理, 冶金工业出版社, 2011. pp. 321.
12 Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications, Wiley, USA, 2000, pp. 12.
13 Li D. Electrochemical principle, Beihang University Press, China, 1999, pp. 142(in Chinese).
李荻. 电化学原理, 北京航空航天大学出版社, 1999, pp. 142.
14 Zhu H. The analysis and design of active inductor. Master’s Thesis, University of Electronic Science and Technology of China, China, 2017(in Chinese).
朱恒. 有源电感的分析与设计. 硕士学位论文, 电子科技大学, 2017.
15 Lan J H. Study on measurement method of solution conductivity. Master’s Thesis, Dalian University of Technology, China, 2002(in Chinese).
兰敬辉. 溶液电导率测量方法的研究. 硕士学位论文, 大连理工大学, 2002.
16 Sun C Y, Guo X M. Transactions of Nonferrous Metals Society of China, 2011, 21(7), 1648.
17 Hu G X, Xu D G, Chen F D, et al. Measurement of chemical analysis, 2011, 20(2), 16(in Chinese).
胡国星, 徐大刚, 陈方汀, 等. 化学分析计量, 2011, 20(2), 16.
18 Liang L K, Guo Z W, Guo J G, et al. Journal of Northeastern University of Technology, 1987, 50(1), 36(in Chinese).
梁连科, 郭仲文, 郭建光, 等. 东北工学院学报, 1987, 50(1), 36.
19 Fu X C. Physical chemistry(vol. 2), Higher Education Press, China, 2006, pp. 119(in Chinese).
傅献彩. 物理化学(下册), 高等教育出版社, 2006, pp. 119.
20 Yang C H, Gao Y M, Yang Y B, et al. Journal of Iron and Steel Research, 2015, 27(10), 34(in Chinese).
杨创煌, 高运明, 杨映斌, 等. 钢铁研究学报, 2015, 27(10), 34.
21 Schiefelbein S L. A new technique to measure the electrical properties of molten oxides. Ph. D. Thesis, Massachusetts Institute of Technology, USA, 1996.
22 Pommier A, Gaillard F, Malki M, et al. American Mineralogist, 2010, 95(2-3), 284.
23 Kazumi O, Hidehiro H, Shigeta H. Tetsu-to-Hagane, 1978, 64(2), 225.
24 Li N Q, Liu Y, Jing Y Z, et al. Journal of Nanjing University of Aeronautics & Astronautics, 2001, 33(5), 490(in Chinese).
李念强, 刘亚, 经亚枝, 等. 南京航空航天大学学报, 2001, 33(5), 490.
25 Wang S H, Hou D T. Physical Experiment of College, 1998, 11(3), 12(in Chinese).
王素红, 侯德亭. 大学物理实验, 1998, 11(3), 12.
26 Wenner F. Physical Review, 1911, 32(6), 614.
27 Wenner F, Weibel E, Xu X Y. Electrical Measurement & Instrumentation, 1964(6), 45(in Chinese).
F Wenner, E Weibel, 许新源. 电测与仪表, 1964(6), 45.
28 Robbins G D. Journal of the Electrochemical Society, 1969, 116(6), 813.
29 Lin M D. Design and implementation of automatic test for contact resis-tance of connector based on kelvinfour-wire method. Master’s Thesis, Xidian University, China, 2020(in Chinese).
林茂多. 基于开尔文四线法接插件接触电阻自动测试设计与实现. 硕士学位论文, 西安电子科技大学, 2020.
30 Hua J M. Electrical Measurement & Instrumentation, 1980(12), 29(in Chinese).
华坚明. 电测与仪表, 1980(12), 29.
31 Zhang M H. Physics Experimentation, 1989, 9(3), 141(in Chinese).
张美焕. 物理实验, 1989, 9(3), 141.
32 Wang X S. Journal of Nanjing Architectural and Civil Engineering Institute, 1996, 16(1), 62(in Chinese).
王新生. 南京建筑工程学院学报, 1996, 16(1), 62.
33 Cao C N, Zhang J Q. An introduction to electrochemical impedance spectroscopy, China Science Publishing & Media Ltd., China, 2002, pp. ⅲ(in Chinese).
曹楚南, 张鉴清. 电化学阻抗谱导论, 科学出版社, 2002, pp. ⅲ.
34 Lao Y G, Gao Y M, Wang Q, et al. Materials Reports, 2019, 33(11), 1882(in Chinese).
劳一桂, 高运明, 王强, 等. 材料导报, 2019, 33(11), 1882.
35 Zhang H. Measurements of conductivity of slag containing TiC by means of A. C. impedance spectroscopy. Master’s Thesis, Northeastern University, China, 2003(in Chinese).
张辉. 交流阻抗谱测定含碳化钛炉渣电导率. 硕士学位论文, 东北大学, 2003.
36 Lu X G, Li F S, Li L F, et al. The Chinese Journal of Nonferrous Metals, 2000, 10(3), 437(in Chinese).
鲁雄刚, 李福燊, 李丽芬, 等. 中国有色金属学报, 2000, 10(3), 437.
37 Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications, Chemical Industry Press Co., Ltd., China, 2005, pp. 261(in Chinese).
阿伦·J·巴德, 拉里·R·福克纳. 电化学方法原理和应用, 化学工业出版社, 2005, pp. 261.
38 Wu Y X. EMC studies of cables inside the cabin under strong electromagnetic pulse. Master’s Thesis, Nanjing University of Posts and Telecommunications, China, 2016(in Chinese).
吴元新. 强电磁脉冲下机舱内线缆的电磁兼容研究. 硕士学位论文, 南京邮电大学, 2016.
39 Xue X X, Zhang H, Zhao N, et al. Journal of Northeastern University(Natural Science), 2004, 25(9), 870(in Chinese).
薛向欣, 张辉, 赵娜, 等. 东北大学学报, 2004, 25(9), 870.
40 Wang S L, Li G Q, Sui Z T. Acta Metallurgica Sinica, 1999, 35(5), 499(in Chinese).
王淑兰, 李光强, 隋智通. 金属学报, 1999, 35(5), 499.
41 Yan X, Pan W, Wang X, et al. Metallurgical and Materials Transactions B, 2021, 52(4), 2526.
42 Yin L J. Preparation and analytical application of alloy layer transition bismuth film and antimony film electrodes. Master’s Thesis, University of Science and Technology of China, China, 2011(in Chinese).
尹丽君. 合金层过渡铋膜与锑膜电极的制备及其分析应用. 硕士学位论文, 中国科学技术大学, 2011.
43 Naomi A F. Electrical properties of binary solutions of molten titanium dioxide-barium oxide. Ph. D. Thesis, Massachusetts Institute of Technology, USA, 1996.
44 Naomi A F, Kevin G R, Donald R S. Electrochimica Acta, 2001, 46(22), 3351.
45 Barati M, Coley K S. Metallurgical and Materials Transactions B, 2006, 37(1), 41.
46 Liu J H, Zhang G H, Chou K C. ISIJ International, 2015, 55(11), 2325.
47 Liu J H, Zhang G H, Wu Y D, et al. Metallurgical and Materials Tran-sactions B, 2015, 47(1), 798.
48 Liu J H, Zhang G H, Wu Y D, et al. Canadian Metallurgical Quarterly, 2016, 55(2), 221.
49 Liu Y X, Liu J H, Zhang G H, et al. High Temperature Materials and Processes, 2018, 37(2), 121.
50 Dedyukhin A, Apisarov A, Tkacheva O, et al. ECS Transactions, 2009, 16(49), 317.
51 Li S, Lv X, Fan G, et al. In: Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies, Wang S, Free M L, Alam S, Zhang M, Taylor P R, ed., Springer Cham, Switzerland, 2017, pp. 335.
52 Mills K C, Keene B. International Materials Reviews, 1987, 32(1-2), 1.
53 Bajcsy J, Malinovsky M, Matiasovsky K. Electrochimica Acta, 1962, 7(5), 543.
54 Mitchell A, Cameron J. Metallurgical and Materials Transactions B, 1971, 2(12), 3361.
55 Yoshio O, Akira M, Ken-Ji M, et al. Journal of the Japan Institute of Metals, 1981, 45(10), 1036.
56 Sadoway D R, Rhoads K G, Fried N A, et al. US Patent, 5489849, 1996.
57 Schiefelbein S L, Sadoway D R. Metallurgical and Materials Transactions B, 1997, 28(6), 1141.
58 Schiefelbein S L, Fried N A, Rhoads K G, et al. Review of Scientific Instruments, 1998, 69(9), 3308.
59 Schiefelbein S L. High Temperature Materials and Processes, 2001, 20(3-4), 247.
60 Zhou X L, Chen M, Yu J K. In: 2005 China Iron and Steel Annual Meeting. Beijing, 2005, pp. 646(in Chinese).
周秀丽, 陈敏, 于景坤. 2005中国钢铁年会. 北京, 2005, pp. 646.
61 Zhao L. Study on the influence of electromagnetic field on the properties of molten slag. Master’s Thesis, Chongqing University, China, 2018(in Chinese).
赵立. 电磁场对熔融保护渣性能影响的研究. 硕士学位论文, 重庆大学, 2018.
62 Zhang L, Annelies M, Bart B, et al. Metallurgical and Materials Tran-sactions B, 2021, 52(1), 2563.
63 Malki M, Echegut P. Journal of Non-Crystalline Solids, 2003, 323(1-3), 131.
64 Jing L C, Yin N, Zhang J M, et al. Journal of University of Science and Technology Beijing, 2011, 33(8), 922(in Chinese).
景财良, 尹娜, 张炯明, 等. 北京科技大学学报, 2011, 33(8), 922.
65 Qian L X, Chun T J, Long H M, et al. International Journal of Minerals, Metallurgy and Materials, 2020, 27(1), 8.
[1] 曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
[2] 孙宗旭, 张焕芝, 荆锐, 吴博竞, 徐芬, 夏永鹏, 孙立贤. 相变复合纳米纤维的研究与应用[J]. 材料导报, 2023, 37(7): 21060061-8.
[3] 杨春利, 黄江龙, 杜晶, 陈喜, 张浩, 王靖. In、Ta共掺杂Ni-BaCeO3基氢分离膜[J]. 材料导报, 2023, 37(6): 21090258-8.
[4] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[5] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[6] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[7] 张弛, 党乾, 刘国怀, 王昭东. 稀土钇的开发及应用[J]. 材料导报, 2023, 37(3): 22120049-8.
[8] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[9] 郝玮, 王杰, 胥生元, 高文生, 谢克锋. BiOCl光催化剂的制备及应用研究综述[J]. 材料导报, 2023, 37(20): 22030313-10.
[10] 陈斐, RannalterLeana Ziwen, 宋尚斌, 曹诗雨, 沈强. 氧化物固体电解质的三维框架结构设计及在全固态锂离子电池中的应用[J]. 材料导报, 2023, 37(19): 22020093-15.
[11] 董浩永, 任瑛, 张贵锋. MPCVD同质外延单晶金刚石研究进展[J]. 材料导报, 2023, 37(16): 21100019-8.
[12] 许乃才, 黄国勇, 史丹丹, 边绍菊, 黎四霞. 氧化铝基吸附材料制备及除氟研究进展[J]. 材料导报, 2023, 37(15): 21080098-10.
[13] 金海泽, 孔文慧, 贾赫男, 冯晨晨, 李翠霞, 贾德昌. 直写成型无机非金属材料及其结构/功能应用进展[J]. 材料导报, 2023, 37(11): 21120033-10.
[14] 辛思甜, 聂龙辉. 室内空气中甲醛脱除技术及其应用进展[J]. 材料导报, 2023, 37(11): 21080277-13.
[15] 肖建庄, 叶涛华, 隋同波, 潘智生. 废弃混凝土再生微粉的基本问题及应用[J]. 材料导报, 2023, 37(10): 22120116-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed