Measurement Technological and Application Progress on the Electrical Conductivity of Ferrous Metallurgy Slag
WANG Haichuan1,2, ZHANG Chen1, LEI Jie1,2, WU Ting1,2,*
1 School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243032, Anhui, China 2 Key Laboratory of Metallurgical Emission Reduction & Resource Recycling (Ministry of Education), Anhui University of Technology,Ma’anshan 243002, Anhui, China
Abstract: Slag is an indispensable material and is important in the iron-and steel-making process. The electrical conductivity of slag is one of its essential properties. Because the electrical conductivity of high-temperature molten slag is closely related to the cation number and network polymerization, the structure of molten slag can be revealed by measuring its conductivity, which provides a theoretical basis for composition design and performance regulation. Owing to the complexity, as well as the uneven superior or inferior of the methods of measuring electrical conductivity, current research on the molten slag conductivity is limited. The main instruments for electrical conductivity measurement are the digital electric bridge and the electroche-mical workstation. Although the digital electric bridge measurement is faster compared to the electrochemical workstation measurement, the capacitance, inductance, and other factors in the conductivity cell inevitably affect the experimental results. Conversely, the electrochemical workstation test is a slow and complex process. However, the electrochemical impedance spectroscopy method, which is based on electrochemical measurement methodology, can reflect the capacitance and inductance in the conductance cell in the form of an equivalent circuit, thereby affording a higher accuracy. Moreover, chronoamperometry, which is derived from the electrochemical workstation methodology, can estimate the number of ion and electron migration through a high-temperature melt to comprehensively study the mechanisms of high-temperature melt conductivity. Conductivity measurement methods are categorized into two types: relative and absolute methods. The relative measurement method uses a standard solution or melt with a known conductivity to calibrate the conductivity cell constant before measuring the conductivity of the melt. However, owing to differences in conductivity cells, the precision of the measurement results is questionable; the operation is laborious, and the application scope is limited. Concerning the absolute measurement method, the calibration of the electrolytic cell constant is not required. However, during the measurement process, the resistance of high-temperature melt should be measured repeatedly; consequently, the measurement process is cumbersome and has complex calculations. Based on the intrinsic relationship between the properties of molten slag, the conductivity test is essential for studying the crystallization, glass transition temperature, melting point, and assimilation of high-temperature molten slag. However, when the molten slag conductivity is measured using the existing methods, the use of a DC voltage results in severe concentration polarization. Whereas the application of a high voltage is likely to make the molten slag electrolytic and cause chemical polarization. Both conditions will contribute to the uneven distribution of molten slag components and affect the test results. Therefore, the use of an AC voltage can reduce the experimental error. This paper reviews the measurement technology and application progress in the field of high-temperature molten slag conductivity. Furthermore, the test principles, equipment, methods, and applications are summarized. The advantages and disadvantages of various test methods have been analyzed to provide theoretical guidance for the accurate measurement of the electrical conductivity of metallurgical molten slag.
1 Bockris J O, Kitchener J A, Ignatowicz S, et al. Transactions of the Faraday Society, 1952, 48, 75. 2 Segers L, Fontana A, Winand R. Canadian Metallurgical Quarterly, 1983, 22(4), 429. 3 Sarkar S B. ISIJ International, 1989, 29(4), 348. 4 Wu T. Study on microstructure and macroproperty of mould fluxes with low-reactivity. Ph. D. Thesis, Chongqing University, China, 2017(in Chinese). 吴婷. 低反应性连铸保护渣熔体的微结构特征及宏观性能研究. 博士学位论文, 重庆大学, 2017. 5 Gao J X. Fundamental research on the component, structure and properties of mold fluxes containing Al2O3 and CaF2. Ph. D. Thesis, Chongqing University, China, 2016(in Chinese). 高金星. 含Al2O3和CaF2连铸结晶器保护渣成分、结构和性能的基础研究. 博士学位论文, 重庆大学, 2016. 6 Zhu J H, Hou Y, Zheng W W, et al. ISIJ International, 2019, 59(3), 427. 7 Pang Z, Lv X, Yan Z, et al. Metallurgical and Materials Transactions B, 2019, 50(1), 385. 8 Eric R H. Journal of the Southern African Institute of Mining and Metallurgy, 2004, 104(9), 499. 9 Farahat R, Eissa M, Megahed G, et al. ISIJ International, 2019, 59(2), 216. 10 Pauna H, Willms T, Aula M, et al. Metallurgical and Materials Transactions B, 2020, 51, 1646. 11 Huang X G. Ferrous metallurgy principle, Metallurgical Industry Press, China, 2011, pp. 321(in Chinese). 黄希祜. 钢铁冶金原理, 冶金工业出版社, 2011. pp. 321. 12 Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications, Wiley, USA, 2000, pp. 12. 13 Li D. Electrochemical principle, Beihang University Press, China, 1999, pp. 142(in Chinese). 李荻. 电化学原理, 北京航空航天大学出版社, 1999, pp. 142. 14 Zhu H. The analysis and design of active inductor. Master’s Thesis, University of Electronic Science and Technology of China, China, 2017(in Chinese). 朱恒. 有源电感的分析与设计. 硕士学位论文, 电子科技大学, 2017. 15 Lan J H. Study on measurement method of solution conductivity. Master’s Thesis, Dalian University of Technology, China, 2002(in Chinese). 兰敬辉. 溶液电导率测量方法的研究. 硕士学位论文, 大连理工大学, 2002. 16 Sun C Y, Guo X M. Transactions of Nonferrous Metals Society of China, 2011, 21(7), 1648. 17 Hu G X, Xu D G, Chen F D, et al. Measurement of chemical analysis, 2011, 20(2), 16(in Chinese). 胡国星, 徐大刚, 陈方汀, 等. 化学分析计量, 2011, 20(2), 16. 18 Liang L K, Guo Z W, Guo J G, et al. Journal of Northeastern University of Technology, 1987, 50(1), 36(in Chinese). 梁连科, 郭仲文, 郭建光, 等. 东北工学院学报, 1987, 50(1), 36. 19 Fu X C. Physical chemistry(vol. 2), Higher Education Press, China, 2006, pp. 119(in Chinese). 傅献彩. 物理化学(下册), 高等教育出版社, 2006, pp. 119. 20 Yang C H, Gao Y M, Yang Y B, et al. Journal of Iron and Steel Research, 2015, 27(10), 34(in Chinese). 杨创煌, 高运明, 杨映斌, 等. 钢铁研究学报, 2015, 27(10), 34. 21 Schiefelbein S L. A new technique to measure the electrical properties of molten oxides. Ph. D. Thesis, Massachusetts Institute of Technology, USA, 1996. 22 Pommier A, Gaillard F, Malki M, et al. American Mineralogist, 2010, 95(2-3), 284. 23 Kazumi O, Hidehiro H, Shigeta H. Tetsu-to-Hagane, 1978, 64(2), 225. 24 Li N Q, Liu Y, Jing Y Z, et al. Journal of Nanjing University of Aeronautics & Astronautics, 2001, 33(5), 490(in Chinese). 李念强, 刘亚, 经亚枝, 等. 南京航空航天大学学报, 2001, 33(5), 490. 25 Wang S H, Hou D T. Physical Experiment of College, 1998, 11(3), 12(in Chinese). 王素红, 侯德亭. 大学物理实验, 1998, 11(3), 12. 26 Wenner F. Physical Review, 1911, 32(6), 614. 27 Wenner F, Weibel E, Xu X Y. Electrical Measurement & Instrumentation, 1964(6), 45(in Chinese). F Wenner, E Weibel, 许新源. 电测与仪表, 1964(6), 45. 28 Robbins G D. Journal of the Electrochemical Society, 1969, 116(6), 813. 29 Lin M D. Design and implementation of automatic test for contact resis-tance of connector based on kelvinfour-wire method. Master’s Thesis, Xidian University, China, 2020(in Chinese). 林茂多. 基于开尔文四线法接插件接触电阻自动测试设计与实现. 硕士学位论文, 西安电子科技大学, 2020. 30 Hua J M. Electrical Measurement & Instrumentation, 1980(12), 29(in Chinese). 华坚明. 电测与仪表, 1980(12), 29. 31 Zhang M H. Physics Experimentation, 1989, 9(3), 141(in Chinese). 张美焕. 物理实验, 1989, 9(3), 141. 32 Wang X S. Journal of Nanjing Architectural and Civil Engineering Institute, 1996, 16(1), 62(in Chinese). 王新生. 南京建筑工程学院学报, 1996, 16(1), 62. 33 Cao C N, Zhang J Q. An introduction to electrochemical impedance spectroscopy, China Science Publishing & Media Ltd., China, 2002, pp. ⅲ(in Chinese). 曹楚南, 张鉴清. 电化学阻抗谱导论, 科学出版社, 2002, pp. ⅲ. 34 Lao Y G, Gao Y M, Wang Q, et al. Materials Reports, 2019, 33(11), 1882(in Chinese). 劳一桂, 高运明, 王强, 等. 材料导报, 2019, 33(11), 1882. 35 Zhang H. Measurements of conductivity of slag containing TiC by means of A. C. impedance spectroscopy. Master’s Thesis, Northeastern University, China, 2003(in Chinese). 张辉. 交流阻抗谱测定含碳化钛炉渣电导率. 硕士学位论文, 东北大学, 2003. 36 Lu X G, Li F S, Li L F, et al. The Chinese Journal of Nonferrous Metals, 2000, 10(3), 437(in Chinese). 鲁雄刚, 李福燊, 李丽芬, 等. 中国有色金属学报, 2000, 10(3), 437. 37 Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications, Chemical Industry Press Co., Ltd., China, 2005, pp. 261(in Chinese). 阿伦·J·巴德, 拉里·R·福克纳. 电化学方法原理和应用, 化学工业出版社, 2005, pp. 261. 38 Wu Y X. EMC studies of cables inside the cabin under strong electromagnetic pulse. Master’s Thesis, Nanjing University of Posts and Telecommunications, China, 2016(in Chinese). 吴元新. 强电磁脉冲下机舱内线缆的电磁兼容研究. 硕士学位论文, 南京邮电大学, 2016. 39 Xue X X, Zhang H, Zhao N, et al. Journal of Northeastern University(Natural Science), 2004, 25(9), 870(in Chinese). 薛向欣, 张辉, 赵娜, 等. 东北大学学报, 2004, 25(9), 870. 40 Wang S L, Li G Q, Sui Z T. Acta Metallurgica Sinica, 1999, 35(5), 499(in Chinese). 王淑兰, 李光强, 隋智通. 金属学报, 1999, 35(5), 499. 41 Yan X, Pan W, Wang X, et al. Metallurgical and Materials Transactions B, 2021, 52(4), 2526. 42 Yin L J. Preparation and analytical application of alloy layer transition bismuth film and antimony film electrodes. Master’s Thesis, University of Science and Technology of China, China, 2011(in Chinese). 尹丽君. 合金层过渡铋膜与锑膜电极的制备及其分析应用. 硕士学位论文, 中国科学技术大学, 2011. 43 Naomi A F. Electrical properties of binary solutions of molten titanium dioxide-barium oxide. Ph. D. Thesis, Massachusetts Institute of Technology, USA, 1996. 44 Naomi A F, Kevin G R, Donald R S. Electrochimica Acta, 2001, 46(22), 3351. 45 Barati M, Coley K S. Metallurgical and Materials Transactions B, 2006, 37(1), 41. 46 Liu J H, Zhang G H, Chou K C. ISIJ International, 2015, 55(11), 2325. 47 Liu J H, Zhang G H, Wu Y D, et al. Metallurgical and Materials Tran-sactions B, 2015, 47(1), 798. 48 Liu J H, Zhang G H, Wu Y D, et al. Canadian Metallurgical Quarterly, 2016, 55(2), 221. 49 Liu Y X, Liu J H, Zhang G H, et al. High Temperature Materials and Processes, 2018, 37(2), 121. 50 Dedyukhin A, Apisarov A, Tkacheva O, et al. ECS Transactions, 2009, 16(49), 317. 51 Li S, Lv X, Fan G, et al. In: Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies, Wang S, Free M L, Alam S, Zhang M, Taylor P R, ed., Springer Cham, Switzerland, 2017, pp. 335. 52 Mills K C, Keene B. International Materials Reviews, 1987, 32(1-2), 1. 53 Bajcsy J, Malinovsky M, Matiasovsky K. Electrochimica Acta, 1962, 7(5), 543. 54 Mitchell A, Cameron J. Metallurgical and Materials Transactions B, 1971, 2(12), 3361. 55 Yoshio O, Akira M, Ken-Ji M, et al. Journal of the Japan Institute of Metals, 1981, 45(10), 1036. 56 Sadoway D R, Rhoads K G, Fried N A, et al. US Patent, 5489849, 1996. 57 Schiefelbein S L, Sadoway D R. Metallurgical and Materials Transactions B, 1997, 28(6), 1141. 58 Schiefelbein S L, Fried N A, Rhoads K G, et al. Review of Scientific Instruments, 1998, 69(9), 3308. 59 Schiefelbein S L. High Temperature Materials and Processes, 2001, 20(3-4), 247. 60 Zhou X L, Chen M, Yu J K. In: 2005 China Iron and Steel Annual Meeting. Beijing, 2005, pp. 646(in Chinese). 周秀丽, 陈敏, 于景坤. 2005中国钢铁年会. 北京, 2005, pp. 646. 61 Zhao L. Study on the influence of electromagnetic field on the properties of molten slag. Master’s Thesis, Chongqing University, China, 2018(in Chinese). 赵立. 电磁场对熔融保护渣性能影响的研究. 硕士学位论文, 重庆大学, 2018. 62 Zhang L, Annelies M, Bart B, et al. Metallurgical and Materials Tran-sactions B, 2021, 52(1), 2563. 63 Malki M, Echegut P. Journal of Non-Crystalline Solids, 2003, 323(1-3), 131. 64 Jing L C, Yin N, Zhang J M, et al. Journal of University of Science and Technology Beijing, 2011, 33(8), 922(in Chinese). 景财良, 尹娜, 张炯明, 等. 北京科技大学学报, 2011, 33(8), 922. 65 Qian L X, Chun T J, Long H M, et al. International Journal of Minerals, Metallurgy and Materials, 2020, 27(1), 8.