Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21120226-6    https://doi.org/10.11896/cldb.21120226
  无机非金属及其复合材料 |
规则孔结构CeO2设计和汽油车颗粒物氧化催化剂Rh/CeO2的制备及性能研究
贾丰瑞1, 焦毅2, 刘志敏3, 姚鹏2, 王健礼1, 陈耀强1, 李云3,*
1 四川大学化学学院,成都 610064
2 四川大学新能源与低碳技术研究院,成都 610064
3 中自环保科技股份有限公司,成都 610041
Design of Regular Pore Structure CeO2 and Study on the Preparation and Performance of Rh/CeO2 Catalyst for Particulate Matter Oxidation of Gasoline Vehicle
JIA Fengrui1, JIAO Yi2, LIU Zhimin3, YAO Peng2, WANG Jianli1, CHEN Yaoqiang1, LI Yun3,*
1 College of Chemistry, Sichuan University, Chengdu 610064, China
2 Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610064, China
3 Sinocat Environmental Technology Co., Ltd., Chengdu 610041, China
下载:  全 文 ( PDF ) ( 11168KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 汽油车排放的颗粒物粒径小,数量大,不易沉积,对人体及环境危害大。在其尾气排气管中安装颗粒物捕集器(Gasoline particulate filter,GPF)是减少颗粒物排放最有效的手段;需要在GPF表面涂覆催化剂以维持其高效的捕集能力和再生性能,核心是催化剂。然而,碳烟(颗粒物模型物)催化氧化是典型的“气-固-固”三相界面反应,催化剂与碳烟的接触效率以及对气相氧的活化能力是关键。本工作以共聚物微球为模板制备了具有40 nm和80 nm孔径且贯穿孔结构的CeO2,并采用浸渍法制备Rh/CeO2催化剂;系统地研究了孔径对催化剂-碳烟接触效率及Rh负载对气相氧活化能力的影响,从而探究其对碳烟氧化活性的影响。实验结果表明,通过共聚物微球模板法合成的CeO2的催化活性优于商业化的CeO2,且孔径越大活性越好;结合表征结果说明本工作合成的80 nm贯穿孔结构CeO2具有最大的储氧量且气相氧的活化能力最好;Rh负载CeO2后,催化剂活性明显提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾丰瑞
焦毅
刘志敏
姚鹏
王健礼
陈耀强
李云
关键词:  贵金属  二氧化铈  碳烟燃烧  大孔材料  颗粒物捕集器    
Abstract: Due to the small particle size, large amount and the difficulty of the deposit of particulate matters emitted from gasoline vehicles, it is harmful to human health and the environment. Installing the gasoline particulate filter (GPF) in the exhaust pipe is the most effective way to reduce particulate emissions. GPF requires a catalyst coated on its surface to maintain its high efficiency of capture and regeneration, in which the catalyst is key. However, the catalytic oxidation of soot particles is a typical gas-solid-solid three-phase interfacial reaction, and the key factors affec-ting the activity are the contact efficiency between the catalyst and soot and the gas-phase oxygen activation ability of the catalyst. In this work, CeO2 with 40 nm and 80 nm connected pore structures were prepared by using poly(acrylonitrile co styrene) copolymer microspheres as templates, Rh/CeO2 catalysts were prepared by using an impregnated method. The influences of pore size on the contact efficiency of catalyst-soot particles and the gas phase oxygen activation capacity of Rh introduction were systematically studied, so as to explore its influence on the oxidation activity of soot. The results of soot oxidation experiments show that the catalytic activity of CeO2 synthesized by template method is better than that of commercial CeO2, and the larger the pore size is, the better the activity is. Combined with the characterization results, the CeO2 with 80 nm connected pore structures has the optimal pore size, oxygen storage and oxygen mobility, and the corresponding Rh/CeO2 catalyst shows the better soot oxidation activity.
Key words:  noble metal    CeO2    soot combustion    porous structure material    GPF
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  X513  
  O643.32+2  
基金资助: 国家自然科学基金(21902110);移动源污染排放控制技术国家工程实验室开放基金(NELMS2018A09)
通讯作者:  * 李云,高级工程师,中自环保科技股份有限公司技术中心主任。1989年毕业于天津大学化工系,获得国家科技进步奖二等奖1项。主要从事化工催化剂和机动车尾气催化剂研究及产业化技术开发。liy@sinaocat.com.cn   
作者简介:  贾丰瑞,四川大学化学学院2021级硕士研究生,本科毕业于四川大学。主要研究方向为可控介观结构纳米催化剂的制备及在能源领域的相关应用。
引用本文:    
贾丰瑞, 焦毅, 刘志敏, 姚鹏, 王健礼, 陈耀强, 李云. 规则孔结构CeO2设计和汽油车颗粒物氧化催化剂Rh/CeO2的制备及性能研究[J]. 材料导报, 2023, 37(15): 21120226-6.
JIA Fengrui, JIAO Yi, LIU Zhimin, YAO Peng, WANG Jianli, CHEN Yaoqiang, LI Yun. Design of Regular Pore Structure CeO2 and Study on the Preparation and Performance of Rh/CeO2 Catalyst for Particulate Matter Oxidation of Gasoline Vehicle. Materials Reports, 2023, 37(15): 21120226-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120226  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21120226
1 Gao Y X, Duan A Q, Liu S, et al. Applied Catalysis B, 2017, 203, 116.
2 Piumetti M, Linden B V D, Makkee M, et al. Applied Catalysis B, 2016, 199, 96.
3 Hernández W Y, Tsampas M N, Zhao C, et al. Catalysis Today, 2015, 258, 525.
4 Yang W N, Wang S M, Li K Z, et al. Chemical Engineering Journal, 2019, 364, 448.
5 Xiong L, Yao P, Liu S, et al. Molecular Catalysis, 2019, 467, 16.
6 Gao Y X, Wu X D, Nord R B, et al. Catalysis Science Technology, 2018, 8, 1621.
7 Liu S, Wu X D, Weng D, et al. Applied Catalysis B, 2013, 138-139, 199.
8 Yao P, He J S, Jiang X, et al. Journal of the Energy Institute, 2020, 93, 774.
9 Mukherjee D, Rao B G, Reddy B M. Applied Catalysis B, 2016, 197, 105.
10 Lin X T, Li S J, He H, et al. Applied Catalysis B, 2018, 223, 91.
11 He H, Lin X T, Li S J, et al. Applied Catalysis B, 2018, 223, 134.
12 He J S, Zhang H L, Wang W, et al. Environmental Science and Pollution Research, 2021, 28, 26018.
13 Xu J N, Lu G Z, Guo Y, et al. Applied Catalysis A, 2017, 535, 1.
14 Piumetti M, Bensaid S, Russo N, et al. Applied Catalysis B, 2015, 165, 742.
15 Piumetti M, Linden B V, Makkee M, et al. Applied Catalysis B, 2016, 199, 96.
16 He J S, Yao P, Qiu J, et al. Fuel, 2021, 15, 119359.
17 Li Q, Xin Y, Zhang Z L, et al. Chemical Engineering Journal, 2018, 337, 654.
18 Cheng Y, Song W Y, Liu J, et al. ACS Catalysis, 2017, 7, 3883.
19 Cheng Y, Liu J, Zhao Z, et al. Journal of Hazardous Materials, 2018, 342, 317.
20 Xiong J, Wu Q Q, Mei X L, et al. ACS Catalysis, 2018, 8, 7915.
21 Rao C, Liu R, Feng X H, et al. Chinese Journal of Catalysis, 2018, 39, 1683.
22 Peng X S, Lin H, Shangguan W F, et al. Industrial Engineering Chemistry Research, 2006, 45, 8822.
23 Liu T Z, Li Q, Xin Y, et al. Applied Catalysis B, 2018, 232, 108.
24 Guo X, Meng M, Dai Q, et al. Applied Catalysis B, 2013, 142-143, 278.
25 Tian G K, Chen H, Lu C X, et al. Catalysis Science Technology, 2016, 6, 4511.
26 Wang Z, Zhu H, Ai L, et al. Journal of Colloid and Interface Science, 2016, 478, 209.
27 Kurnatowska M, Kepinski L. Materials Research Bulletin, 2013, 48, 852.
28 Delimaris D, Ioannides T. Applied Catalysis B, 2008, 84, 303.
29 Zhu Y, Pan H, Chen S H, et al. Chinese Journal of Catalysis, 2012, 33, 1965.
30 Jian S J, Tian Z W, Hu J P, et al. Advanced Powder Materials, 2022, 1, 100004.
31 Wei W, Wang S P, Ma X B, et al. Catalysis Today, 2009, 148, 323.
[1] 孙富丽, 张炜, 俞一帆, 盛殷笑, 庄桂林. 二氧化铈负载型催化剂的研究进展[J]. 材料导报, 2023, 37(3): 22120058-12.
[2] 孙加营, 方杨飞, 张一波, 刘秋文, 刘凯杰, 杨向光. CuO修饰CeO2纳米复合磨料的制备及抛光性能[J]. 材料导报, 2023, 37(3): 22120092-5.
[3] 齐亚兵. 电子废弃物中稀贵金属回收技术的发展现状及研究进展[J]. 材料导报, 2022, 36(Z1): 21120215-8.
[4] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[5] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[6] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[7] 吴雷, 彭犇, 周军, 刘长波, 岳昌盛, 田玮, 宋永辉, 姜磊. 碳基非贵金属电催化剂研究进展[J]. 材料导报, 2020, 34(23): 23009-23019.
[8] 张先桂, 刘小磐, 高朋召, 廖明雅, 周仁宸. CeO2含量对SiO2-B2O3-ZnO-K2O-BaO系彩釉玻璃基料性能的影响[J]. 材料导报, 2020, 34(22): 22042-22046.
[9] 郦雪, 张燕, 张玉琰, 宋凤娟, 赵晓涵, Akanyange Stephen Nyabire, 曹晓强, 吕宪俊. [BMIM]PF6离子液体中GO/CuO/CeO2催化剂的制备及可见光活性[J]. 材料导报, 2020, 34(18): 18019-18024.
[10] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[11] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[12] 皮茂, 张守村, 魏杰, 李伟达. 采用高内相乳液模板法制备葡萄糖基/麦芽糖基大孔材料及其形貌表征[J]. 材料导报, 2019, 33(16): 2804-2807.
[13] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[14] 王辉, 李士君, 王梅, 裴彦博, 胡绍争. 载银g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂的制备及光催化固氮产氨性能[J]. 材料导报, 2018, 32(20): 3496-3503.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed