Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22010229-6    
  金属与金属基复合材料 |
AZ91D镁合金锰系磷酸盐转化膜的研究:磷化液各组分及含量对耐蚀性能的影响
张书弟, 何欢欢, 许宇恒, 徐阳
沈阳理工大学环境与化学工程学院,沈阳110159
Research on Manganese-based Phosphate Conversion Coating on AZ91D Magnesium Alloy: the Effect of Various Components and Contents of Phosphating Solution on Corrosion Resistance
ZHANG Shudi, HE Huanhuan, XU Yuheng, XU Yang
School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
下载:  全 文 ( PDF ) ( 10332KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究不同添加剂对磷化膜耐腐蚀性能的影响,提高镁合金锰系磷化膜的耐腐蚀性能。利用化学转化法在AZ91D镁合金表面制备锰系磷化膜。研究磷化液的组分及含量对磷化膜耐蚀性能的影响,利用SEM、EDS对膜层表面形貌、元素组成进行表征;通过电化学行为和点滴试验对转化膜的耐腐蚀性能进行分析判断。磷化液各组分的最佳质量浓度为:35 g/L MnSO4、30 g/L NaH2PO4、0.5 g/L EDTA-4Na、1 g/L NaF、2 g/L NaNO3,pH=2.5(用磷酸调节pH)。在电镜图中观察到镁合金磷化膜有明显的双层膜结构,且膜层的厚度约为24 μm。优化后磷化膜的厚度更厚,表面更加致密,裂纹数量更少。在EDS中观察,加入NaF后,膜层的组成物质变化,有少量的F元素参与成膜。相比基础磷化膜,优化后的磷化膜耐腐蚀性增加,腐蚀电流密度从8.912×10-7 A/cm2减小为5.56×10-7 A/cm2,容抗弧半径也有明显的增大,耐蚀性能得到提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张书弟
何欢欢
许宇恒
徐阳
关键词:  镁合金  耐腐蚀  磷化膜  磷化工艺    
Abstract: This research was aimed to explore the influence of different additives on the corrosion resistance of phosphating coatings, and to improve the corrosion resistance of manganese-based phosphating coatings on magnesium alloys. The manganese-based phosphating film was prepared on the surface of AZ91D magnesium alloy by the chemical conversion method. The influence of the composition and content of the phosphating solution on the corrosion resistance of the phosphating film was explored, and the surface morphology and composition of the film were characterized by SEM and EDS analyses. The optimum mass concentration of each component in phosphating solution was 35 g/L MnSO4, 30 g/L NaH2PO4, 0.5 g/L EDTA-4Na, 1 g/L NaF, and 2 g/L NaNO3 (pH=2.5 with phosphoric acid). In the SEM image, the magnesium alloy phosphating film displayed an obvious double-layer film structure, and the thickness of the film layer was about 24 μm. Through SEM observation, the thicker the optimized phosphating film, the more dense surface and fewer cracks were found. It was observed in the EDS diagram that after the addition of NaF, the composition of the film layer changed, and a small number of F element participated in the film formation. Compared with the basic phosphating film, the corrosion resistance of the optimized phosphating film was enhanced, the corrosion current density was reduced from 8.912×10-7 A/cm2 to 5.56×10-7 A/cm2, and the capacitive arc radius was also significantly increased. Overall, the corrosion resistance performance was greatly improved.
Key words:  magnesium alloy    corrosion resistance    phosphating film    phosphating process
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TG178  
基金资助: 国家自然科学基金(51771050)
通讯作者:  zhangshudi@163.com   
作者简介:  张书弟,沈阳理工大学环境与化学工程学院副教授、硕士研究生导师。2007年获得东北大学硕士学位,2014年获得东北大学博士学位。目前主要从事于材料腐蚀与防护的研究工作。发表论文30余篇,包括Rare Metals、Colloids and Surfaces A: Physicochemical and Engineering Aspects、《腐蚀科学与防护技 术》等。
引用本文:    
张书弟, 何欢欢, 许宇恒, 徐阳. AZ91D镁合金锰系磷酸盐转化膜的研究:磷化液各组分及含量对耐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 22010229-6.
ZHANG Shudi, HE Huanhuan, XU Yuheng, XU Yang. Research on Manganese-based Phosphate Conversion Coating on AZ91D Magnesium Alloy: the Effect of Various Components and Contents of Phosphating Solution on Corrosion Resistance. Materials Reports, 2022, 36(Z1): 22010229-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22010229
1 陈振华. 镁合金, 化学工业出版社, 2004, pp. 5.
2 Wu L P, Zhao J J, Xie Y P, et al. Transactions of Nonferrous Metals So-ciety of China, 2010, 20(2),630.
3 李凌杰, 雷惊雷, 张胜涛, 等.材料工程, 2006(10), 60.
4 Wu X, Liu Z, Liu X, et al. Materials and Corrosion, 2021, 72(5), 925.
5 Duan G, Yang L, Liao S, et al. Corrosion Science, 2018, 135(1), 197.
6 Friedrich H E, Schumann S. Journal of Materials Processing Technology, 2001, 117(3), 276.
7 Li T, Leng Z, Wang S, et al. Journal of Magnesium and Alloys, 2021,16, 11.
8 黎文献. 镁及镁合金. 中南大学出版社, 2005, pp. 3.
9 Liu H, Tong Z, Yang Y, et al. Journal of Alloys and Compounds, 2021, 865, 158.
10 Choi Y I, Salman S, Kuroda K, et al. Journal of the Electrochemical So-ciety, 2013, 160(8), 364.
11 Cheng I C, Fu E G, Liu L D, et al. Journal of the Electrochemical Society, 2008, 155(5), 219.
12 Phuong N V, Gupta M, Moon S. Transactions of Nonferrous Metals Society of China, 2017, 27(5), 1087.
13 曾荣昌, 柯伟, 徐永波, 等. 金属学报, 2001,37(7), 673.
14 李光玉, 连建设, 牛丽媛, 等. 高等学校化学学报, 2006, 27(5), 817.
15 刘丽凤. AM60镁合金表面钙系磷化膜及羟基磷酸钙膜的研究. 硕士学位论文, 长春吉林大学, 2009.
16 Chen Y G, Luan B L, Song G L.et al. Surface and coatings technology, 2012, 210, 156.
17 Wei Z, Zhang X, Su Y, et al. Surface and Coatings Technology, 2020, 397, 257.
18 廖赏举. 界面反应控制的镁合金磷酸盐转化膜研究. 博士学位论文, 中国科学技术大学, 2021.
19 Sun Y H, Wang R C, Peng C Q, et al. Transactions of Nonferrous Metals Society of China, 2017, 27(7), 1455.
20 Li T, Leng Z, Wang S, et al. Journal of Magnesium and Alloys, DOI: 10.1016/j.jma.2021.03.012.
21 Zhou W, Shan D, Han E H, et al. Corrosion Science, 2008, 50(2), 329.
22 Chen X B, Zhou X, Abbott T B, et al. Surface and Coatings Technology, 2013, 217, 147.
23 Yun X Q, Zhou Y, Ping X J. International Journal of Electrochemical Science, 2015, 10(10), 8454.
24 殷正正, 曾荣昌, 崔蓝月, 等. 山东科技大学学报(自然科学版), 2017, 36(2), 57.
[1] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[2] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[3] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[4] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[5] 鲍键, 李全安, 陈晓亚, 张迁, 陈籽佚. 挤压镁合金的研究进展[J]. 材料导报, 2022, 36(10): 20090073-12.
[6] 郭金刚, 陈红, 李俊荣, 唐子龙, 陈清明. 316L不锈钢双极板元素富集耐腐蚀特性研究[J]. 材料导报, 2021, 35(z2): 391-394.
[7] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[8] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[9] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[10] 李强, 赵特, 魏磊山, 陈明华, 孙旭东. Cu含量对生物可降解Zn-Cu合金组织和性能的影响[J]. 材料导报, 2021, 35(8): 8088-8092.
[11] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[12] 朱云娜, 高利霞, 熊彤彤, 杜婵, 张士民, 陈必清. 化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合镀层[J]. 材料导报, 2021, 35(4): 4159-4164.
[13] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[14] 杨浩, 王成, 肖小波, 王晨, 陈俊锋, 汪炳叔, 张维林, 崔熙贵. 添加硼酸和钨酸铵对取向硅钢无铬绝缘涂层的影响[J]. 材料导报, 2021, 35(22): 22141-22145.
[15] 车波, 卢立伟, 吴木义, 康伟, 唐伦圆, 房大庆. 预时效对变形镁合金组织与力学性能的影响[J]. 材料导报, 2021, 35(21): 21249-21258.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed