Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22020089-6    
  无机非金属及其复合材料 |
激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究
王文旋1,2, 刘敏2, 邱克强1, 董东东2, 刘太楷2, 李艳辉2, 闫星辰2
1 沈阳工业大学材料科学与工程学院,沈阳 110000
2 广东省科学院新材料研究所,现代材料表面工程技术国家工程实验室, 广州 510630
Study on Structure and Catalytic Efficiency of Laser-selective Melting Methane Steam Catalytic Reformer
WANG Wenxuan1,2, LIU Min2, QIU Keqiang1, DONG Dongdong2, LIU Taikai2, LI Yanhui2, YAN Xingchen2
1 College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110000, China
2 Institute of New Materials, Guangdong Academy of Sciences, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangzhou 510630, China
下载:  全 文 ( PDF ) ( 6660KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢气是新一代清洁能源的代表,甲烷重整制氢是获得氢气的重要技术。激光选区熔化技术可实现重整器的结构功能一体化,简化制备流程,因此本工作通过计算机辅助软件进行设计并建模得到具有极小曲面结构的蜂窝式催化重整器模型,采用激光选区熔化技术制备了具有不同壁厚及不同孔径的催化重整器,研究了负载催化剂前后重整器表面宏观、微观形貌及物相组成的变化,并结合甲烷水蒸气催化重整机理研究分析得出重整器壁厚、孔径、比表面积及催化温度对氢气转化率的影响规律及机理。结果表明:重整器壁厚对氢气转化效率的影响并不显著;反应温度的升高可提高氢气转化率,当温度为900 ℃ 时,氢气转化率最高;同时,当孔径过小时,由于反应过程中产生积碳、流速过快导致氢气转化率降低,适当地增大孔径可使转化率提升,在此适当的孔径前提下,氢气的转化率随着重整器的比表面积增大而提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王文旋
刘敏
邱克强
董东东
刘太楷
李艳辉
闫星辰
关键词:  甲烷  水蒸气  催化重整器  催化剂  氢气浓度    
Abstract: Hydrogen is a representative of the new generation of clean energy. Methane reforming is an important technology to obtain hydrogen. Laser selective melting technology can realize integration of structure and function of the reforming unit and simplify preparation process. In this work, cellular model for catalytic reforming unit with minimal surface structure was obtained by computer aided design software to carry on the design and modeling; catalytic reforming unit with different thickness and aperture was prepared by laser selective melting technology; the morphology and phase composition of reformer before and after catalyst loading were studied. Combined with the research on the mechanism of methane steam catalytic reforming, the influence of reforming wall thickness, pore size, specific surface area and catalytic temperature on hydrogen conversion and mechanism were obtained. The results show that the wall thickness of the reformer has no significant effect on hydrogen conversion efficiency; the increase of reaction temperature can improve the hydrogen conversion, with the highest conversion at 900 ℃; at the same time, when the pore size is too small, the conversion rate of hydrogen decreases due to the carbon deposition in the reaction process and the rapid flow rate. The conversion rate can be increased by increasing the pore diameter appropriately. Under the condition of such an appropriate pore size, the conversion rate of hydrogen increases with the increase of the specific surface area of the reformer.
Key words:  methane    water vapor    catalytic reformer    catalyst    hydrogen concentration
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TK91  
基金资助: 广东省重点领域研发计划项目(2020B090923002);广东特支计划项目(2019BT02C629);国家重点研发计划项目(2018YFB1502603);广东省科学院建设国内一流科研机构专项(2019GDASYL-0102007);广州市产学研协同创新重大专项“燃气轮机关键零部件表面处理及维修”
通讯作者:  kqqiu@sut.edu.cn   
作者简介:  王文旋,2019年6月于沈阳工业大学获得工学学士学位,现为沈阳工业大学材料科学与工程学院硕士研究生,同时在广东省科学院新材料研究所联合培养,在刘敏教授、邱克强教授、董东东博士的指导下进行研究。目前主要研究领域为甲烷水蒸气催化重整。
邱克强,1984年7月获得吉林大学学士学位,1990年6月获得沈阳工业大学硕士学位,2001年1月获得中国科学院金属研究所博士学位,现为沈阳工业大学材料科学与工程学院教授,主要研究方向为亚稳材料及其应用,发表论文200余篇,发明专利授权13项。
引用本文:    
王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
WANG Wenxuan, LIU Min, QIU Keqiang, DONG Dongdong, LIU Taikai, LI Yanhui, YAN Xingchen. Study on Structure and Catalytic Efficiency of Laser-selective Melting Methane Steam Catalytic Reformer. Materials Reports, 2022, 36(Z1): 22020089-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22020089
1 许珊,王晓来,赵睿.化学进展, 2003(2), 141.
2 李培俊,曹军,王元华,等.化工进展, 2015,34(6), 1588.
3 万子岸,高飞,周华群,等.现代化工, 2016,36(5), 48.
4 周昕瞳,刘振星,刘昌俊.化工进展, 2019,38(1), 516.
5 王阳峰,丁强,陈锋,等.石油炼制与化工, 2020,51(8), 30.
6 陈秀娟,赵国瑞,董东东,等.中国激光, 2019,46(12),70.
7 陈秀娟. 激光选区熔化成形Inconel625合金的缺陷形成分析及热处理工艺研究.硕士学位论文,广东工业大学,2020.
8 李帅. 激光选区熔化成形镍基高温合金的组织与性能演变基础研究.硕士学位论文,华中科技大学,2017.
9 Pakhare D, Spivey J. Chemical Society Reviews, 2014,43(22),7813.
10 Wang M,Fu Z,Yang Z. Fuel Cells, 2014,14(2), 251.
11 Jungst T, Smolan W, Schacht K, et al. Chemical Reviews, 2016,116(3),1496.
12 孙杰,孙春文,李吉刚,等.中国工程科学,2013,15(2), 98.
13 Konarova M, Aslam W, Ge L, et al. ChemCatChem, 2017, 9(21), 4132.
14 Wei Q H, Li H J, Liu G G,et al. Communications, 2020,11(1), 1.
15 Yang C, Zhang C, Xing W,et al. Intermetallics, 2018,94,22.
16 Pashchenko D, Makarov I. Energy, 2021, 222(16),119993.
[1] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[2] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[3] 徐欢, 于佳蕊, 曹中秋, 王艳, 张轲. 钴基催化剂催化NaBH4制氢研究进展[J]. 材料导报, 2022, 36(5): 20090051-11.
[4] 谭义凤, 张婷, 张云飞, 孙琦, 田蒙奎. Cum-Fen/Ti1-xSnxO2复合催化剂的脱硝性能及抗硫活性[J]. 材料导报, 2022, 36(4): 20100096-6.
[5] 向阳, 熊昆, 张海东, 陈佳, 余林键. 电催化尿素氧化的镍基催化剂表界面调控[J]. 材料导报, 2022, 36(10): 20080297-8.
[6] 李金祺, 陈艺文, 裴玉冰, 王天剑, 聂丽萍. 汽轮机高温叶片用马氏体耐热钢服役氧化行为研究[J]. 材料导报, 2021, 35(z2): 395-398.
[7] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[8] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[9] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[10] 刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
[11] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[12] 王凯, 冯东, 赵文波. 尿素醇解法制备甘油碳酸酯催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 541-547.
[13] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[14] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[15] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed