Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21100214-5    
  高分子与聚合物基复合材料 |
液晶高分子聚合物的类型、加工、应用综述
殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银
陕西生益科技有限公司,国家电子电路基材研究中心,陕西分中心,陕西 咸阳 712000
Categories, Processability, Applications and Research Advances in Liquid Crystalline Polymer
YIN Weifeng, ZENG Yaode, YANG Zhongqiang, ZHANG Jiming, LIU Rui, HUO Cui, YAN Shanyin
The Sub-centers of National Engineering Research Center of Electronic Circuits Base Materials,Shaanxi Shengyi Technology Co., Ltd., Xianyang 712000, Shaanxi, China
下载:  全 文 ( PDF ) ( 3805KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 液晶高分子(LCP),简单可分为溶致LCP、热致LCP,其在一定条件下以液晶相存在,有独特的分子取向,兼容高分子、液晶特性。LCP具有高耐热、高模量、低熔融粘度、极小的热膨胀系数、低介电损耗、高机械强度等优异的力学性能、介电性能、光学性能,可广泛应用于高频高速电子通讯、生物医用、复合材料等领域。
与聚乙烯、聚丙烯等通用塑性聚合物相比,LCP成型工艺还不够完善,尚有许多问题亟需解决,如填料填充、加工温度、相容性等因素如何影响挤出成型产品性能,理论模型、循环加工次数、相容性等如何影响注塑成型产品性能,拉伸比、加热参数等如何影响纤维产品力学性能。此外,LCP在具体领域应用也存在较多问题,如印制电路板(PCB)加工、表面处理等如何对通信领域的信号产生影响,加工条件、自增强纤维化能力等如何对复合材料性能产生影响,以及生物医学、光学、记忆材料、导热等领域应用的可行性如何等。
大量研究结果表明,LCP含量、剪切速率、加工温度、无机填料含量等因素对LCP挤出制品的模量、电阻率、相容性等有影响,增强材料类型、熔融粘度、LCP含量等因素能明显提高LCP复合材料的力学性能。通信领域,LCP在30~110 GHz的介电损耗角正切(Df)小于0.004 8,进一步优化LCP的PCB加工参数、表面处理,制备的天线具有宽带宽、高效连接等优异性能;生物医用领域,LCP可作为抗原检测、传感器、神经网络的有效组件;复合材料领域,引入LCP、调节加工参数,可使复合材料的力学性能大幅提升。此外,LCP在记忆、光学、导热方面也有较多应用探索。
本文对LCP分类进行了介绍,对LCP的挤出工艺、注塑工艺、纺丝工艺进行了说明,对LCP在通讯、生物医用、复合材料等领域进行了综述,并展望了该材料的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
殷卫峰
曾耀德
杨中强
张记明
刘锐
霍翠
颜善银
关键词:  液晶高分子  复合材料  聚合物基体    
Abstract: Liquid crystal polymer (LCP) is divided into lyotropic LCP and thermotropic LCP. It exists in a liquid crystal phase under certain conditions with a unique molecular orientation. LCP combines the polymer and liquid crystal characteristics with excellent mechanical, dielectric, and optical properties. The LCP normally exhibit good thermal stability, high modulus, low melt viscosity, very small thermal expansion coefficient, low dielectric loss, and high strength. LCP has applications widely at the area of high-frequency and high-speed electronic communications, biomedi-cal polymer, LCP composites and so on.
LCP has attracted much more interest because of poor molding processability compared with general plastic polymers such as polyethylene and polypropylene. This urges intensive research endeavors to study the influence of factors on molding processability, such as filling filler, processing temperature, theoretical models, interface compatibility, and so on. And the influence on mechanical property of LCP fibre is also studied, such as heating parameters, stretching ratio, et al. Meanwhile, there also attracted much more attention on the influence of LCP’s application, such as the influence of PCB processing and surface treatment on data transmission, the influence of processing conditions and self-reinforced in-situ capabilities on LCP composite properties, and the influence of feasibility on applications at the field of biomedicine, optics, memory materials, thermal conductivity, etc.
Research results show that the properties of LCP extruded products, such as mechanical modulus, resistivity and compatibility, was significantly improved by LCP content, stretching ratio, melt viscosity, processing temperature, and inorganic filler content. And the mechanical properties of LCP composites was significantly improved by reinforcing material type, melt viscosity, LCP content, etc. The LCP antenna performance is excellent with high-bandwidth and highly reliable connectivity due to dielectric loss factor less than 0.0048 at 30—110 GHz. And the LCP antenna has excellent performances, such as wide bandwidth and efficient connection, by further optimizing the PCB processing parameters and surface treatment of LCP. LCP also has application in the field of biomedicine, such as antigen detection, sensors, effective component for neural networks. And in the field of polymer composites, the mechanical properties of LCP composites was greatly improved with the optimization of processing parameters. Additionally, LCP was also explored in field of memory, optics, and heat conduction.
This article gives a review on the molding processability, including extrusion, injection, and spinning processability. The LCP categories, application progress and research efforts are mentioned. In addition, the prospect of LCP is also presented.
Key words:  liquid crystal polymer    polymer composite    polymer matrix
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TB332  
基金资助: 科技部创新方法工作专项“政产学研协同的创新方法推广机制和模式研究”(2019IM010203)
通讯作者:  yinwf@syst.com.cn   
作者简介:  殷卫峰,2011年3月毕业于西北工业大学,获得理学硕士学位。2011年3月至今,就职于国家电子电路研究中心,主要从事高频、高介电等特种覆铜箔层压板开发。
引用本文:    
殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
YIN Weifeng, ZENG Yaode, YANG Zhongqiang, ZHANG Jiming, LIU Rui, HUO Cui, YAN Shanyin. Categories, Processability, Applications and Research Advances in Liquid Crystalline Polymer. Materials Reports, 2022, 36(Z1): 21100214-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21100214
1 黄毅萍, 周冉.安徽化工, 1999(6),16.
2 马会茹, 段华军, 唐红.玻璃钢复合材料, 2001(6),13.
3 Ji Y, Bai Y, Liu X B, et al. Advanced Industrial and Engineering Polymer Research, 2020,3,160.
4 罗延龄.工程塑料应用, 1998(9),26.
5 夏英, 葛雪明, 侯传金, 等.塑料制造, 2012(3),82.
6 刘晓丹.对二烯丙氧基苯甲酰对苯二酚酯液晶及其二缩甘油醚的合成、固化与热性能的研究. 硕士学位论文, 河北大学, 2007.
7 潘欣蔚. 热致液晶高分子的组成及合成工艺研究.博士学位论文, 复旦大学, 2005.
8 张凯. 聚对苯二甲酰癸二胺/热致液晶高分子共混物制备及性能. 硕士学位论文, 华南理工大学, 2015.
9 焦剑,雷渭媛.高聚物结构、性能与测试, 化学工业出版社,2003.
10 何曼君,陈维孝,董西侠.高分子物理, 复旦大学出版社,2000.
11 周其凤, 王新久.液晶高分子, 科学出版社, 1994.
12 Han H,Bhowmik P K. Progress in Polymer Science, 1997, 22(7) ,1431.
13 周美胜,张文龙,丁冬雁,等. 材料导报,2012,26(2),15.
14 熊馒, 余其汝,范大熙等.中国科技成果, 2003(3),20.
15 陈骁, 赵建青, 袁彦超, 等.合成材料老化与应用, 2013(6) ,37.
16 柯锦玲.塑料,2004,33(3),86.
17 张焕莉.上海化工, 2020, 45(1),72.
18 张春吉, 唐跃, 张惠敏.工程塑料应用, 2004, 32(2),67.
19 李跃文.塑料科技, 2010,38(11),83.
20 Tchoudakov R,Narkis M, Siegmann A. Polymer Engineering and Science, 2004, 44(3),528.
21 Filipea S, Cidade M T, Wilhelm M, et al. Polymer,2004,45,2367.
22 Zhang Baoqing, Ding Yanfen, Chen Peng. Polymer, 2005, 46,5385.
23 冯刚, 林克伟, 王华峰等.塑料工业, 2014, 42(12),9.
24 陶志强, 陈建升, 王旸.纤维复合材料, 2018, 37(4),26.
25 李跃文.塑料工业, 2011, 39 (4),6.
26 任亦心, 刘君峰, 许忠斌, 等.塑料工业, 2021, 49(2),12.
27 冯刚, 王华峰, 张朝阁, 等.塑料工业, 2015, 43(2),10.
28 曹艳霞, 赖华林.塑料工业, 2018, 46(7),1.
29 Chen T, Craig D M, Lin J, et al. Composites, 2020, 200(1) ,1.
30 Gijs W K, Sanjay R, Carolus H R M. Macromolecules, 2019, 52(15) ,6005.
31 Anthony Sullivan, Anil Saigal, Michael A Zimmerman. Polymer Enginee-ring and Science, 2019, 59(2) ,1.
32 Li Youbing, Shi Wen, Sun Zhenzhen, et al. Journal of Macromolecular Science, 2013, 52,1064.
33 崔天放, 邵玉昌, 翟玉春, 等.材料导报, 2004, 18(12),51.
34 金近, 信春玲, 何亚东, 等.塑料, 2009, 38(6),26.
35 陈文萍, 李德利, 成艳华, 等.合成纤维工业, 2014, 37( 2),10.
36 Dibenedetto A T, Nicolais L, Amendola E, et al. Polymer Engineering and Science, 1989, 29( 3),153.
37 秦益民.纺织学报, 2005, 26(3),136.
38 Bassett B R, Yee A F. Polymer Composites, 1990, 11(1),10.
39 Seong Yun Kim, Seong Hun Kim, Seung Hwan Lee, et al. Composites: Part A, 2009, 40, 607.
40 秦益民.纺织学报, 2005, 26(2),138.
41 Seong Yun Kim, Seong Hun Kim, Jun Young Kim, et al. Applied Polymer Science, 2007, 104,205.
42 Seong Yun Kim, Jun Young Kim, Seong Hun Kim. Polymer Internatio-nal, 2008, 57,378.
43 Jae-Kon Choi,Bong-Woo Lee,Yoo-Sung Choi, et al. Journal of Applied Polymer Science, 2015,132(5),1.
44 汤涛,张旭,许仲梓.南京工业大学学报(自然科学版),2010, 32(4),105.
45 肖中鹏, 麦堪成, 曹民等.广州化工, 2013,41(3),9.
46 皇甫梦鸽, 李一丹, 张燕, 等. 绝缘材料, 2020,53(8),1.
47 Tasaki T, Shiotani A, Yamaguchi T, et al. Transactions Japan Institute Electronics Packaging,2018,11 ,006.
48 Thompson D C, Tantot O, Jallageas H, et al. IEEE Transactions on Microwave Theory and Techniques,2004,52,1343.
49 Hosonoa R, Uemichi Y, Hasegawa Y,et al. IEICE Electronics Express, 2017, 14, 1.
50 Zhang X,Yan X R, Liu J, et al. Infrared, Millimeter, and Terahertz Wave, 2010,31,469.
51 Hiroshi O, Kazuaki T, Shinji T,et al. Japan Institute of Electronics Packa-ging, 2003, 6,588.
52 Yung K C,Liem H, Choy H, et al. Applied Polymer Science,2010,116(4),2348.
53 Yung K C, Liem H, Choy H S, et al. Materials Science: Materials in Electronics, 2010,1,954.
54 樊国栋, 陈春兰, 刘香云, 等.功能材料,2010, 41(2),238.
55 Christine Jérôme, Philippe Lecomte. Advanced Drug Delivery Reviews, 2008,60(9),1056.
56 张青, 陈昌伦, 吴狄.广东化工, 2015, 42( 6),120.
57 Lee S Y, Kwi-IlPark,ChulHuh,et al. Nano Energy, 2012, 1(1),145.
58 Dohyuk H, Wilhelmine N Vries, Simon W M, et al. Biomedical Microdevices, 2012, 14, 207.
59 Gwon T M, Kim C, Shin S, et al. Biomedical Engineering Letters, 2016,6,148.
60 Joonsoo Jeong, Seung Woo Lee, Kyou Sik Min, et al. Sensors and Mate-rials, 2012,24, 189.
61 Sung Eun Lee, Sang Beom Jun, Hyun Joo Lee, et al. IEEE Transactions on Biomedical Engineering, 2012,59,2085.
62 Gülistan Koçer, Jeroen ter Schiphorst, Matthew Hendrikx, et al. Advanced Materials, 2017,59,1.
63 王宏刚,简令奇,杨生荣.高分子材料科学与工程, 2003,19(5), 10.
64 晁芬,周勇.天津科技,2015, 42(12), 13.
65 杨朝明.化工新材料,2010, 38(5),34.
66 秦岭, 张师军, 王红.石油化工, 2005, 34(Z1),668.
67 Gijs de Kort, Lucienne Bouvrie, Sanjay Rastogi,et al. ACS Sustainable Chemistry & Engineering, 2020, 8,624.
68 Jing Jiang, Xianhu Liu, Meng Lian,et al. Polymer Testing,2018, 67,183.
69 Rossella Suracea, Vincenzo Bellantonea, Gianluca Trottaa,et al. Manufacturing Processes,2017, 28 ,351.
70 Mubashir Q, Ansaria Michael J, Bortnerab Donald G, et al. Additive Manu-facturing,2019, 29 ,100814.
71 于颖敏.高分子通报, 2018(4),36.
72 纪凡策, 刘向东, 杨宇明.工程塑料应用, 2018,46(1),32.
73 Sun Guoxing, Liang Rui, Zhang Jinrui, et al. Cement and Concrete Composites, 2017, 78,57
74 Guokang Chen, Qian Zhang, Zhuorong Hu, et al. Macromolecular Science, 2019, 56, 484.
75 刘春波,林绿叶,杨林杰.机床与液压, 2020, 48(4),5.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[4] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[5] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[6] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[7] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[8] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[9] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[10] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[11] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[12] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[13] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[14] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[15] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed