Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20090263-6    https://doi.org/10.11896/cldb.20090263
  金属与金属基复合材料 |
2195铝锂合金超低温流变行为及成形特性研究
黄珂1,2, 易幼平1,2,3, 黄始全2,3, 董非1,2, 王晨光1,2
1 中南大学轻合金研究院,长沙 410083
2 中南大学高性能复杂制造国家重点实验室,长沙 410083
3 中南大学机电工程学院,长沙 410083
Experimental Research on 2195 Al-Li Alloy Rheological Behavior and Forming Characteristics in Cryogenic
HUANG Ke1,2, YI Youping1,2,3, HUANG Shiquan2,3, DONG Fei1,2, WANG Chenguang1,2
1 Light Alloy Research Institute, Central South University, Changsha 410083, China
2 State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
3 School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 6888KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 2195铝锂合金薄壁件被广泛应用于航空航天领域,提高2195铝锂合金的成形性是实现其高性能成形制造的基础和前提。本工作通过不同温度(298~77 K)和不同应变速率(0.000 25~0.01 s-1)的超低温单轴拉伸试验研究了变形温度和应变速率对2195铝锂合金超低温流变规律的影响,结合埃里克森杯突实验及断口形貌观察,分析了变形温度对成形性的影响机理。结果表明:变形温度由室温(298 K)降低至超低温(77 K),2195铝锂合金试样延伸率和抗拉强度较室温分别提升78.11%和71.13%;杯突值(IE)和最大凸模力较室温提升19.2%和51.4%。同时,超低温条件下,材料加工硬化率较室温更高,并且具有更大的稳定塑形应变区间,成形性能明显提高;试样断口韧窝较室温尺寸减小、深度增加、分布更加均匀,断裂模式为典型的韧性断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄珂
易幼平
黄始全
董非
王晨光
关键词:  2195铝锂合金  超低温  单轴拉伸  本构模型  流变特性  成形性能    
Abstract: 2195 Al-Li alloy thin-walled parts are widely used in the aerospace field. Improving the formability of 2195 Al-Li alloy is the basis and prere-quisite for achieving high-performance forming and manufacturing. In this work, uniaxial tensile tests with different temperatures (298—77 K) and different strain rates (0.000 25—0.01 s-1) are used to study the effects of deformation temperature and strain rate on rheological law of 2195 Al-Li alloy at cryogenic temperature. The influence mechanism of deformation temperature on formability is analyzed by Erickson cupping experiment and the observation of fracture morphology. The results show that the elongation and tensile strength of the 2195 Al-Li alloy sample are increased by 78.11% and 71.13% respectively compared with room temperature when the deformation temperature is reduced from room temperature(298 K) to cryogenic temperature(77 K). And the Erichsen cupping index (IE) and maximum punch force increased by 19.2% and 51.4% compared with room temperature. At the same time, at cryogenic temperature, the work hardening rate of the material is higher than that at room temperature, and it has a larger stable plastic strain range, and the forming performance is significantly improved. Compared with room temperature, the size of the fracture dimples of the specimen decreases, the depth increases, and the distribution is more uniform. The fracture mode is a typical ductile fracture.
Key words:  2195 Al-Li alloy    cryogenic    uniaxial tensile test    constitutive model    flow stress    forming characteristic
发布日期:  2022-02-10
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51875583);高性能复杂制造国家重点实验室基金(ZZYJKT2018-03)
通讯作者:  yyp@csu.edu.cn   
作者简介:  黄珂,中南大学轻合金研究院机械工程专业,硕士研究生。主要从事航空航天轻合金构件成型工艺研究。
易幼平,中南大学机电工程学院教授,博士研究生导师。主要从事航空、航天轻合金构件成形工艺与模具、热处理工艺和装备等方向的研究。
引用本文:    
黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
HUANG Ke, YI Youping, HUANG Shiquan, DONG Fei, WANG Chenguang. Experimental Research on 2195 Al-Li Alloy Rheological Behavior and Forming Characteristics in Cryogenic. Materials Reports, 2022, 36(3): 20090263-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090263  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20090263
1 Wu G H, Sun J W, Zhang L, et al. Nonferrous Metals Science and Engineering, 2019, 10(2), 31(in Chinese).
吴国华,孙江伟,张亮,等. 有色金属科学与工程, 2019, 10(2), 31.
2 Chen J. Civil Aircraft Design and Research, 2010(1), 39(in Chinese).
陈建. 民用飞机设计与研究, 2010(1), 39.
3 Yang F Q, Xiong H, Ren B F,et al. World Nonferrous Metals, 2018(22), 1(in Chinese).
杨富强,熊慧,任柏峰,等. 世界有色金属, 2018(22), 1.
4 Wu X L, Liu M, Zang J X,et al. Materials Reports, 2016, 30(S2), 571(in Chinese).
吴秀亮,刘铭,臧金鑫,等. 材料导报, 2016, 30(S2), 571.
5 Xu J J, Kang W, Dou C B, et al. Ordnance Material Science and Engineering, 2017, 40(3), 132(in Chinese).
徐进军,康唯,都昌兵,等. 兵器材料科学与工程, 2017, 40(3), 132.
6 Li H Y, Ou L, Zheng Z Q. Journal of Materials Engineering, 2005(10), 31(in Chinese).
李红英,欧玲,郑子樵. 材料工程, 2005(10), 31.
7 Hao S J, Lu Z, Li G A, et al. Materials Reports, 2019, 33(S2), 389(in Chinese).
郝时嘉,陆政,李国爱,等. 材料导报, 2019, 33(S2), 389.
8 Cheng W, Liu W,Yuan S. Materials Science and Engineering: A,2019, 759, 357.
9 Yuan S, Cheng W, Liu W, et al. Journal of Materials Processing Technology,2020, 284, 116743.
10 Schneider R, Grant R J, Sotirov N, et al. Materials & Design, 2015, 88, 659.
11 Sotirov N, Falkinger G, Grabner F,et al. Materials Today: Proceedings, 2015, 2, S113.
12 Grabner F, Österreicher J A, Gruber B, et al. Advanced Engineering Materials, 2019, 21(8),1900089.
13 Kumar M, Sotirov N, Grabner F, et al. Transactions of Nonferrous Metals Society of China,2017, 27(6), 1257.
14 Magalhães D C, Kliauga A M, Ferrante M, et al. In:7th International Conference on Nanomaterials by Severe Plastic Deformation. Sydney, 2017,pp. 012027.
15 Lee W,Lin C. Cryogenics (Guildford),2016, 79, 26.
16 Han D F, Zheng Z Q, Jiang N, et al. The Chinese Journal of Nonferrous Metals, 2004(12), 2090(in Chinese).
韩冬峰,郑子樵,蒋呐,等. 中国有色金属学报, 2004(12), 2090.
17 Li S Q, Deng Z H, Yang Q Y,et al. Rare Metal Materials and Enginee-ring, 2018, 47(2), 553(in Chinese).
李世清,邓赞辉,杨群英,等. 稀有金属材料与工程, 2018, 47(2), 553.
18 Li H, Zhan L, Huang M,et al. Journal of Alloys and Compounds,2021, 851, 156829.
19 Cheng W, Liu W, Fan X, et al. Materials Science and Engineering: A,2020, 790, 139707.
20 Jobba M, Mishra R K, Niewczas M. International Journal of Plasticity,2015, 65, 43.
21 Feng Z L, Chen Q W, Wang H T. Journal of Anhui University of Techno-logy (Natural Science), 2014, 31(1), 29(in Chinese).
冯泽林,陈其伟,王会廷. 安徽工业大学学报(自然科学版), 2014, 31(1), 29.
22 Wang Q L, Tang B T, Zheng E. China Mechanical Engineering, 2015, 26(14), 1978(in Chinese).
王巧玲,唐炳涛,郑伟. 中国机械工程, 2015, 26(14), 1978.
23 Jia B H, Song W D,Tang H P, et al. Rare Metal Materials and Enginee-ring, 2014, 43(9), 2157(in Chinese).
贾宝华,宋卫东,汤慧萍,等. 稀有金属材料与工程, 2014, 43(9), 2157.
24 Zhong Q P, Zhao Z H. Fractography, Higher Education Press, China, 2006,pp.54(in Chinese).
钟群鹏,赵子华.断口学,高等教育出版社,2006, pp.54.
25 Al-Haidary J T, Petch N J, De Los Ria ER. Philosophical Magazine A, 1983, 47(6),891.
26 Chen D, Chen Z H. Aerospace Materials Technology. 2000(4), 1(in Chinese).
陈鼎,陈振华. 宇航材料工艺, 2000(4), 1.
27 Dong F, Huang S, Yi Y, et al. Materials Science and Engineering: A, 2021, 809, 140971.
28 Lin Y T, Wang M C, Zhang Y, et al. Materials & Design, 2017, 113, 54.
[1] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[2] 商怀帅, 邵姝文, 袁守涛, 冯海暴. NPR钢筋与海工混凝土的粘结性能试验研究[J]. 材料导报, 2021, 35(z2): 228-235.
[3] 吴凡, 杨发光, 肖柏林, 杨志强, 高谦. 钢渣掺量对膏体早期强度及流变特性的影响[J]. 材料导报, 2021, 35(3): 3021-3025.
[4] 杨广鑫, 潘家保, 周陆俊, 高洪, 王晓雷. 磁流变脂材料及其应用研究进展[J]. 材料导报, 2021, 35(23): 23183-23191.
[5] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[6] 李杰锋, 杨忠清. 形状记忆合金热力学经验本构模型的数值分析及修正[J]. 材料导报, 2021, 35(18): 18116-18123.
[7] 王运, 张昌明, 张昱. 航空Al7050合金的静动态力学特性研究及JC本构模型构建[J]. 材料导报, 2021, 35(10): 10096-10102.
[8] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
[9] 周斌军, 徐永超, 张志超, 胡蓝. 多层金属板拉深成形研究进展[J]. 材料导报, 2020, 34(23): 23165-23170.
[10] 赵磊杰, 马立峰, 韩廷状, 范沁红. 变形镁合金轧制成形研究进展[J]. 材料导报, 2020, 34(21): 21135-21145.
[11] 刘松浩, 司家勇, 陈龙, 徐梦杰. FGH4096合金含高应变速率的流变行为和热加工图构建[J]. 材料导报, 2020, 34(20): 20123-20129.
[12] 肖阳, 秦海勤, 徐可君. 基于Bodner-Partom理论的FGH96合金本构建模研究[J]. 材料导报, 2020, 34(16): 16125-16130.
[13] 李超, 崔世超, 王岚, 白雪峰. 多聚磷酸/SBS复合改性沥青的高温流变特性[J]. 材料导报, 2020, 34(14): 14057-14062.
[14] 刘博, 王社良, 李彬彬, 杨涛, 李昊, 刘洋, 何露. 一种考虑应变幅值和应变速率影响的超弹性SMA宏观唯象本构模型[J]. 材料导报, 2020, 34(14): 14161-14167.
[15] 温彦凯, 郭乃胜, 王淋, 顾威, 尤占平. 泡沫温拌沥青胶浆的流变特性及微观机制分析[J]. 材料导报, 2020, 34(10): 10052-10060.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed