Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23165-23170    https://doi.org/10.11896/cldb.19100085
  金属与金属基复合材料 |
多层金属板拉深成形研究进展
周斌军1,2, 徐永超1,2, 张志超3, 胡蓝3
1 哈尔滨工业大学流体高压成形技术研究所, 哈尔滨 150001
2 哈尔滨工业大学金属精密热加工国家级重点实验室,哈尔滨 150001
3 上海航天设备制造总厂有限公司,上海 200245
Research Development for Deep Drawing of Multilayer Sheet Metals
ZHOU Binjun1,2, XU Yongchao1,2, ZHANG Zhichao3, HU Lan3
1 Institute of High Pressure Fluid Forming, Harbin Institute of Technology, Harbin 150001, China
2 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China
3 Shanghai Aerospace Equipment Manufacture Co., Ltd, Shanghai 200245, China
下载:  全 文 ( PDF ) ( 4502KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多层板拉深件由于具备优异的综合力学性能,在航空航天、汽车以及化工等领域得到了广泛的应用,近年来围绕多层板的拉深成形性能及起皱行为开展了较多的研究工作。
在拉深成形性能方面重点研究了基本拉深成形工艺参数、组元金属的叠层顺序、厚度比等对多层板拉深成形性能的影响,对界面摩擦的影响则鲜有涉及。由于不同组分金属力学性能的差异,加之发生内皱(多指悬空区起皱)区域的材料在拉深成形过程中的空间位置及曲面形状均在不断发生变化,加大了多层板拉深成形起皱机理及控制的研究难度,目前在多层板拉深成形起皱方面主要还是针对外皱展开研究,对复杂曲面零件悬空区起皱机理的研究则相对较少。
针对多层板拉深成形性能影响因素的研究表明,将成形性能更好的组元金属置于凸模一侧、增加多层板中成形性能更好的组元金属的厚度比、优化基本的拉深成形工艺参数均能提高多层板的拉深成形性能。针对其起皱机理的相关研究表明,组元金属的强度、变形过程中组元金属之间是否存在相互作用(厚向约束以及变形协调)等是多层板拉深成形发生失稳起皱的主要原因。研究结果为多层板的结构设计以及实际应用提供了理论指导。
本文从拉深成形性能和起皱两个方面综述了近年来国内外在多层板拉深成形方面的研究现状及主要存在的问题,在此基础上提出了双层板充液拉深成形方法,通过对相关工艺参数的合理调控,可以消除薄壁曲面件悬空区起皱缺陷,获得合格试件。最后在总结现有研究存在的问题的基础上对多层板拉深成形的未来研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周斌军
徐永超
张志超
胡蓝
关键词:  多层金属板  拉深成形性能  起皱  双层板充液拉深    
Abstract: Deep drawing parts of multilayer sheet metals are widely used in the aerospace, automobile and chemical industries due to its excellent comprehensive mechanical properties. In recent years, many researches have been done regards the deep drawability and wrinkle behavior of multi-layer sheets.
When investigate the deep drawability of multi-layer sheets, the influence of basic deep drawing process parameters, stacking sequence and thickness ratio of component metals on the deep drawability of multilayer sheet is emphatically studied while the influence of interfacial friction is rarely discussed. The constantly changed space position and surface shape of unsupported area of formed sheet parts during the deep drawing process combined with the difference in mechanical properties between component metals make the wrinkling mechanism of multi-layer sheets more complicated to investigate. Thus, at present, the research on wrinkling of multi-layer deep drawing parts is mainly focused on the external wrinkle defects, while relatively few researches focus on the wrinkling mechanism of unsupported area for complex curved sheet parts.
Research on the influence factor of deep drawability of multilayer sheets shows that by placing the component metal with better formability in the punch side, increasing the thickness ratio of component metal with better formability and optimizing the basic deep drawing parameters, the deep drawability of multi-layer sheets can be improved. Meanwhile, relevant studies on the wrinkling mechanism gives that: the strength of component metal and the interaction between component metal during deformation are the main reasons for wrinkling of multi-layer sheets deep drawing. For the structural design and practical application of multilayer sheet metals, the above research findings have certain theoretical guidance meaning.
An overall review of research status and existing problems for deep drawing of multilayer sheet metals is summarized from two aspects: deep drawability and wrinkling. Based on this, double-layer sheets hydroforming was proposed and the wrinkle defects of thinner curved sheet parts can be eliminated by controlling of relevant process parameters reasonably. The exist problem of recent research in this area is summarized and future research direction is prospected, finally.
Key words:  multilayer sheet metals    deep drawability    wrinkling    double-layer sheets hydroforming
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TG386.3  
基金资助: 国家自然科学基金(U1637209;51375114);国家重点研发计划(2017YFB0306304);中央高校基本科研业务费专项(HIT.NSRIF.201134)
通讯作者:  yongchaoxu@hit.edu.cn   
作者简介:  周斌军,2014年7月毕业于哈尔滨工业大学材料学院,获得工学硕士学位。现为哈尔滨工业大学材料学院博士研究生,在徐永超教授的指导下进行研究。目前主要研究方向为铝锂合金双层板充液拉深变形规律研究。
徐永超,哈尔滨工业大学材料科学与工程学院教授,博士研究生导师。1997年7月本科毕业于南昌航空大学锻压工艺及设备专业,2000年2月硕士毕业于西北工业大学材料加工工程专业,2003年8月在哈尔滨工业大学材料加工工程专业取得博士学位,2003.11—2005.12在中国科学院金属研究所从事博士后研究工作。目前在哈尔滨工业大学从事板料液压成形工艺及其数值模拟、板料液压成形设备研制、航天领域高强、低塑合金板材温热成形以及小曲率半径薄壁弯管成形研究。2006年1月至今,作为项目负责人先后承担国家自然科学基金项目、973项目(专题)、金属精密热加工重点实验室基金等项目。目前正在承担国防基础科研重大项目和“高档数控机床与基础装备制造”科技重大专项项目。获得国防科技进步一、二、三等奖各1项,国家科技进步二等奖1项、国家技术发明一等奖1项。参编著作3本,发表学术论文50余篇,其中SCI收录15篇,EI收录10篇。申请发明专利15项,已授权10项。
引用本文:    
周斌军, 徐永超, 张志超, 胡蓝. 多层金属板拉深成形研究进展[J]. 材料导报, 2020, 34(23): 23165-23170.
ZHOU Binjun, XU Yongchao, ZHANG Zhichao, HU Lan. Research Development for Deep Drawing of Multilayer Sheet Metals. Materials Reports, 2020, 34(23): 23165-23170.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100085  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23165
1 Sakaki T, Kakehi K, Ohtakara Y. International Journal of Plasticity,1991,7,505.
2 Yoshida F, Urabe M, Hino R, et al. International Journal of Plasticity,2003,19,2149.
3 Wang X P. Stamping manual (the third edition), China Machine Press, China,2012(in Chinese).
王孝培.冲压手册(第三版),机械工业出版社,2012.
4 Kim J K, Yu T X. Journal of Materials Processing Technology,1997,63,33.
5 Xia Q X, Chen S X, Zhu X. Forging & Stamping Technology,1992(6),21(in Chinese).
夏琴香,陈适先,祝昕.锻压技术,1992(6),21.
6 Guo C. Die & Mould Industry,1994(2),39(in Chinese).
郭成.模具工业,1994(2),39.
7 He S Q. Automobile Technology & Material,1990(2),18(in Chinese).
何世齐.汽车工艺,1990(2),18.
8 Li C, Chi C Z, Lin P, et al. Materials and Design,2015,77,15.
9 Zhou B J, Xu Y C. Journal of Minerals, Metals & Materials,2016,68(12),3201.
10 Zhou B J, Xu Y C. The International Journal of Advanced Manufacturing Technology,2018,99(5-8),1175.
11 Li Shuoben. Stamping technology, China Machine Press, China,1982(in Chinese).
李硕本.冲压工艺学,机械工业出版社,1982.
12 Hu S G, Chen H Z. Engineering analysis of sheet metal cold forming, Beihang University Press, China,2004(in Chinese).
胡世光,陈鹤峥.板料冷压成形的工程解析,北京航空航天大学出版社,2004.
13 Zhang S H, Wang Z R, Xu Y, et al. Journal of Materials Processing Technology,2004,151,237.
14 Lee M G, Korkolis Y, Kim J H. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture,2015,229(4),572.
15 Hartl C. Journal of Materials Processing Technology,2005,167,383.
16 Khandeparkar T, Liewald M. Journal of Materials Processing Technology,2008,202,246.
17 Xu Y C, Han C, Liu X, et al. Steel Research International,2010,81(9),632.
18 Chen Y Z, Liu W, Zhang Z C, et al. International Journal of Mechanical Sciences,2017,120,70.
19 Xu Y C, Zhang S H, Kang D C. Journal of Materials Science & Technology,2004,20(1),92.
20 Takuda H, Fujimoto H, Hatta N. Journal of Materials Science,1998,33,91.
21 Karajibani E, Frzli A, Hashemi R. The International Journal of Advanced Manufacturing Technology,2015,80,113.
22 Yang L, Fan Q, Cao X Q, et al. The Chinese Journal of Nonferrous Metals,2014,24(9),2213(in Chinese).
杨琳,樊奇,曹晓卿,等.中国有色金属学报,2014,24(9),2213.
23 Xia Q X, Zhu X. Aeronautical Manufacturing Technology,1996(3),30(in Chinese).
夏琴香,祝昕.航空工艺技术,1996(3),30.
24 Xia Q X, Xiong S Y, Kuang N Q, et al. Journal of South China University of Technology (Natural Science Edition),2016,44(12),1(in Chinese).
夏琴香,熊盛勇,邝乃强,等.华南理工大学学报(自然科学版),2016,44(12),1.
25 Zou D P, Liu Y. Forging & Stamping Technology,2008(2),120(in Chinese).
邹冬平,刘勇.锻压技术,2008(2),120.
26 Parsa M H, Yamaguchi K, Takakura N. International Journal of Mecha-nical Sciences,2001,43,2331.
27 Guo C, Jia Y X, Guo J Q, et al. Chinese Journal of Mechanical Enginee-ring,1995(6),91(in Chinese).
郭成,贾玉玺,郭建卿,等.机械工程学报,1995(6),91.
28 Shi F B, Zhao X Z, Xia Q X, et al. Modern Manufacturing Engineering,2012(2),99(in Chinese).
时丰兵,赵学智,夏琴香,等.现代制造工程,2012(2),99.
29 Xia Q X, Xiong S Y, Pan X Y, et al. Journal of Netshape Forming Engineering,2016,8(2),37(in Chinese).
夏琴香,熊盛勇,潘兴毅,等.精密成形工程,2016,8(2),37.
30 Tseng H C, Hung C H, Huang C C. The International Journal of Advanced Manufacturing Technology,2010,49,1029.
31 Zafar R, Lang L H, Zhang R J. The International Journal of Advanced Manufacturing Technology,2015,80,2117.
32 Lang L H, Danckert J, Nielsen K B. Journal of Materials Processing Technology,2005,170,524.
33 Zafar R, Lang L H, Zhang R J. International Journal of Material For-ming,2016,9,35.
34 Mori T, Kurimoto S. Journal of Materials Processing Technology,1996,56,242.
35 Mori T, Kurimoto S, Abraha P. The Japan Society of Mechanical Engineers,1996,39(2),404.
36 Morovvati M R, Fatemi A, Sadighi M. The International Journal of Advanced Manufacturing Technology,2011,54,113.
37 Cheng H S, Cao J, Yao H, et al. Journal of Materials Processing Techno-logy,2004,151,133.
38 Gresham J, Cantwell W, Cardew-hall M J, et al. Composite Structures,2006,75,305.
39 Hu Y, Zhang Z R, Dong Y, et al. Forging & Stamping Technology,2018,43(7),140(in Chinese).
胡垚,章争荣,董勇,等.锻压技术,2018,43(7),140.
40 Morovvati M R, Mollaei-dariani B, Asadian-ardakani M H. Journal of Materials Processing Technology,2010,210,1738.
41 He P C. Flange wrinkling study on nickel-coated metal sheet in the stamping process. Master’s Thesis, Xiangtan University, China,2014(in Chinese).
何鹏程.镀镍薄板冲压成形过程中的法兰起皱研究.硕士学位论文,湘潭大学,2014.
42 Hu Y, Zhang Z R, Dong Y, et al. Hot Working Technology,2019,48(1),165(in Chinese).
胡垚,章争荣,董勇,等.热加工工艺,2019,48(1),165.
43 Nourjani Pourmoghadam M, Shahrokh Esfahani R, Morovvati M R, et al. Computational Materials Science,2013,77,35.
44 Chen Y Z, Liu W, Xu Y C, et al. International Journal of Mechanical Science,2015,104,112.
45 Chen Y Z, Liu W, Yuan S J. Journal of Mechanical Engineering,2016,52(4),20(in Chinese).
陈一哲,刘伟,苑世剑.机械工程学报,2016,52(4),20.
[1] 张源, 李静媛, 方智, 陈雨来. 基于Dynaform模拟冲压工艺对17%Cr超纯铁素体不锈钢表面
起皱的影响*
[J]. CLDB, 2017, 31(8): 156-161.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed