Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 600-611    
  高分子与聚合物基复合材料 |
基于分子结构设计的高性能聚酰亚胺的研究进展
刘子甄1, 金欣1, 王闻宇2, 牛家嵘2
1 天津工业大学材料科学与工程学院,天津 300387
2 天津工业大学纺织科学与工程学院,天津 300387
Research Progress of High Performance Polyimides Based on Molecular Structure Design
LIU Zizhen1, JIN Xin1, WANG Wenyu2, NIU Jiarong2
1 School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
2 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 2480KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着科学技术的高速发展,光伏电池等领域所需的材料既需要具有良好的耐高温能力,又需要具有较高的透光率。聚酰亚胺(PI)材料虽然具备超越其他聚合物的耐高温性能,但其高度共轭的刚性分子链易生成电荷转移络合物(CTC),使PI的耐高温性能与透光率成为两种相互矛盾的性能。而通过对PI的分子结构进行设计可以有效减少CTC的产生,平衡两类相互矛盾的性能,实现PI材料的综合性能最优化。通过分子结构设计增强PI材料的综合使用性能的研究已经受到国内外研究人员的广泛关注。本文从PI最具代表性的耐高温性能和透光能力出发,综述了PI的主链、侧基、非平面结构和端基与性能之间的关系,并且分析了不同结构与性能之间的规律和联系,最后展望了PI材料未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘子甄
金欣
王闻宇
牛家嵘
关键词:  聚酰亚胺  分子结构设计  热稳定性  光学性能    
Abstract: With the rapid development of science and technology, the materials needed in the fields of photovoltaic cells need not only good high temperature resistance, but also high light transmittance. Although polyimide (PI) material has superior high-temperature resistance than other polymers, its highly conjugated rigid molecular chains are prone to form charge transfer complex (CTC), which makes its high-temperature resistance and light transmittance become two contradictory properties. By designing the molecular structure of PI, the generation of CTC can be effectively reduced. As a result, the two kinds of contradictory properties can be balanced and the comprehensive performance of PI material can be maximized. The research of enhancing the comprehensive performance of PI materials by molecular structure design has been widely concerned by researchers at home and abroad. In this paper, the relationships between the main chain, side group, nonplanar structure and end group of PI and its performance are reviewed based on the most representative high temperature resistance and light transmission capacity of PI. The law and relation between different structures and properties are analyzed. Finally, the future development trend of PI materials is prospected.
Key words:  polyimide    molecular structure design    thermal stability    optical property
                    发布日期:  2021-12-09
ZTFLH:  TQ31  
基金资助: 国家自然科学基金项目(51573136);天津市自然科学基金重点项目(20JCZDJC00350)
通讯作者:  jinxin29@126.com   
作者简介:  刘子甄,2016年9月至2020年6月在天津工业大学获得材料科学与工程专业工学学士学位,2020年9月至今就读于天津工业大学材料科学与工程学院。研究方向为染料敏化太阳能电池。
金欣,工学博士,教授。学科专业为材料科学与工程,研究方向为功能纤维结构与性能、非织造布成型技术及应用、纤维增强复合材料。
引用本文:    
刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
LIU Zizhen, JIN Xin, WANG Wenyu, NIU Jiarong. Research Progress of High Performance Polyimides Based on Molecular Structure Design. Materials Reports, 2021, 35(z2): 600-611.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/600
1 Ni H J, Liu J G, Wang Z H, et al.Journal of Industrial and Engineering Chemistry, 2015, 28, 16.
2 Jiang S H, Uch B, Agarwal S, et al.ACS Applied Materials & Interfaces, 2017, 9(37), 32308.
3 Yi C H, Li W M, Shi S, et al.Solar Energy, 2020, 195, 340.
4 Chi Q G, Gao Z Y, Zhang T D, et al.ACS Sustainable Chemistry & Engineering, 2019, 7(1), 748.
5 Li X, Wu J Y, Tang C Y, et al.Composites Part B-Engineering, 2019, 159, 355.
6 Li Z W, Song J A, Long Y Z, et al.Nano Research, 2020, 13(3), 861.
7 Hasegawa M, Horie K.Progress in Polymer Science, 2001, 26(2), 259.
8 Ando S, Matsuura T, Saski S.Polymer Journal, 1997, 29(1), 69.
9 Tapaswi P K, Ha C S.Macromolecular Chemistry and Physics, 2019, 220(3), 1800313.
10 程曾汉, 王鑫宇, 张清华. 高分子学报, 2012(8), 895.
11 Zheng S S, Donga H, Wangb S H, et al.Chinese Journal of Polymer Science, 2021, 39(5), 592.
12 Li Y G, Du D X.Advanced Materials Research, 2010, 87-88, 416.
13 Liu J P, Zhang Q H, Xia Q M, et al.Polymer Degradation and Stability, 2012, 97(6), 987.
14 Wang S, Zhou H W, Dang G D, et al.Journal of Polymer Science Part A-Polymer Chemistry, 2009, 47(8), 2024.
15 Wee D, Yoo S, Kang Y H, et al.Journal of Materials Chemistry C, 2014, 2(31), 6395.
16 Song G L, Wang D M, Zhao X G, et al.High Performance Polymers, 2013, 25(3), 354.
17 Qu C Z, Hu J S, Liu X, et al.Materials, 2017, 10(11), 1329.
18 Hegde M, Meenakshisundaram V, Chartrain N, et al.Advanced Mate-rials, 2017, 29(31), 1701240.
19 Liu H, Zhai L, Bai L, et al.Polymer, 2019, 163, 106.
20 Hu X F, Yan J L, Wang Y X, et al.Polymer Chemistry, 2017, 8(39), 6165.
21 Liu J G, Nakamura Y, Ogura T, et al.Chemistry of Materials, 2008, 20(1), 273.
22 Hasegawa M, Kasamatsu K, Koseki K.European Polymer Journal, 2012, 48(3), 483.
23 Dhara M G, Banerjee S.Progress in Polymer Science, 2010, 35(8), 1022.
24 Yang C P, Su Y Y, Wen S J, et al.Polymer, 2006, 47(20), 7021.
25 Ando H, Matsuura T, Sasaki S.Macromolecules, 1992, 25(21), 5858.
26 Mi Z M, Liu Z X, Tian C S, et al.Journal of Polymer Science Part A-Po-lymer Chemistry, 2017, 55(19), 3253.
27 Hsiao S H, Guo W J, Chung C L, et al.European Polymer Journal, 2010, 46(9), 1878.
28 Choi M C, Wakita J, Ha C S, et al.Macromolecules, 2009, 42(14), 5112.
29 Wang C Y, Yu B, Jiang C R, et al.Polymer Bulletin, 2020, 77(12), 6509.
30 Huang X H, Mei M, Liu C J, et al.Journal of Polymer Research, 2015, 22(9), 1.
31 Hu X F, Mu H L, Wang Y X, et al.Polymer, 2018, 134, 8.
32 Deng B, Zhang S J, Liu C, et al.RSC Advances, 2018, 8(1), 194.
33 Wang C Y, Chen W T, Chen Y Y, et al.Materials Chemistry and Phy-sics, 2014, 144(3), 553.
34 Huang Y C, Wang K L, Lee W Y, et al.Journal of Polymer Science Part A-Polymer Chemistry, 2015, 53(3), 405.
35 Ghanem B S, Swaidan R, Litwiller E, et al.Advanced Materials, 2014, 26(22), 3688.
36 Li Y Q, Xu H H, Tao X A, et al.Journal of Materials Chemistry, 2011, 21(6), 1810.
37 Meng X S, Yan J L, Fan W F, et al.RSC Advances, 2014, 4(71), 37458.
38 Min U, Chang J H.Polymer-Korea, 2010, 34(6), 495.
39 Chen J C, Tseng W Y, Tseng I H, et al.Advanced Materials Research, 2011, 287-290, 1388.
40 Vivod S L, Meador M A B, Pugh C, et al.ACS Applied Materials & Interfaces, 2020, 12(7), 8622.
41 Burattini S, Greenland B W, Merino D H, et al.Journal of the American Chemical Society, 2010, 132(34), 12051.
42 Li J W, Yu N, Jing Z X, et al.Polymer Bulletin, 2020, 77(11), 5899.
43 Cao K, Zhang M X, Liu G L.Macromolecular Rapid Communications, 2018, 39(14), 1800045.
44 Lee J H, Youn D Y, Luo Z H, et al.ACS Applied Materials & Interfaces, 2017, 9(45), 39650.
45 Lee D, Youn D Y, Luo Z, et al.RSC Advances, 2016, 6(36), 30331.
46 Dang V Q, Han G S, Trung T Q, et al.Carbon, 2016, 105, 353.
47 Jiang L C, Tian Y Y, Sun T, et al.Journal of the American Chemical Society, 2018, 140(46), 15724.
48 Zhuang Y B, Seong J G, Lee W H, et al.Macromolecules, 2015, 48(15), 5286.
49 Askari M, Chung T S.Journal of Membrane Science, 2013, 444, 173.
50 贝鹏志, 刘红晶, 张莹, 等. 化工进展, 2020, 39(11), 4550.
51 Lu Q H, Wang Z G, Yin J, et al.Applied Physics Letters, 2000, 76(10), 1237.
52 Shoji Y, Ishige R, Higashihara T, et al.Macromolecules, 2010, 43(21), 8950.
53 Wang K L, Liu Y L, Shih I H, et al.Journal of Polymer Science Part A-Polymer Chemistry, 2010, 48(24), 5790.
54 Jimenez-Solomon M F, Song Q L, Jelfs K E, et al.Nature Materials, 2016, 15(7), 760.
55 Lyulin S V, Gurtovenko A A, Larin S V, et al.Macromolecules, 2013, 46(15), 6357.
56 雷环宇, 田国峰, 肖美凤, 等. 高分子学报, 2019, 50(12), 1253.
57 Gissinger J R, Jensen B D, Wise K E.Polymer, 2017, 128, 211.
58 Jo S, Cheng X, Lee J, et al.Journal of Computational Chemistry, 2017, 38(15), 1114.
59 Tsai C L, Yen H J, Liou G S.Reactive & Functional Polymers, 2016, 108, 2.
60 Su H W, Chen W C.Journal of Materials Chemistry A, 2008, 18(10), 1139.
61 Tsai C L, Liou G S.Chemical Communications, 2015, 51(70), 13523.
62 Liu Y, Fan L, Xu X Z, et al.Materials Today Communications, 2020, 25, 101443.
63 Liou G S, Lin P H, Yen H J, et al.Journal of Materials Chemistry, 2009, 20(3), 531.
64 Zhai Y, Ma Y, David S N, et al.Science, 2017, 355(6329), 1062.
65 Liu S, Chen H, Cui T J.Applied Physics Letters, 2015, 106(15), 151601.
66 高文杰, 杨自春, 李昆锋, 等. 材料导报:综述篇, 2019, 33(4), 714.
67 Yang C, Shi Z, Zhang C, et al.Materials Letters, 2018, 231, 87.
68 Li W, Chen M, Jin H, et al.Journal of Materials Chemistry C, 2017, 5(22), 5378.
69 Zhao X, Fan K, Zhang J, et al.Sensors and Actuators A-Physical, 2015, 231, 74.
[1] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[2] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[3] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[4] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[5] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[6] 王亚楠, 曹凤香, 王永锋, 曹静, 李兆, 吴坤尧. 玻璃纤维增强硼酸酯改性酚醛树脂复合材料的摩擦学性能研究[J]. 材料导报, 2021, 35(18): 18210-18215.
[7] 李过, 孙耀宁, 王国建, 代礼葵. 不同环境因素作用下玻纤/环氧乙烯基酯复合材料的冲蚀行为[J]. 材料导报, 2021, 35(16): 16160-16165.
[8] 王芮晗, 赵若虹, 邹宛晏, 王敏, 周博, 齐胜利, 刘刚, 武德珍. 耐原子氧聚酰亚胺材料的研究进展[J]. 材料导报, 2021, 35(11): 11187-11195.
[9] 林绍铃, 黄初, 赵小敏, 陈国华. 石墨烯/黑磷纳米复合粒子对环氧树脂阻燃与热稳定性能的影响[J]. 材料导报, 2021, 35(10): 10184-10188.
[10] 左文韬, 樊正方, 刘国强, 刘江, 廖成. 电荷传输层和热退火对钙钛矿薄膜电学性能的影响[J]. 材料导报, 2020, 34(Z1): 13-18.
[11] 陈营, 魏燕红, 陈德平, 慕东. 中温成型含硅可溶性聚酰亚胺薄膜及其性能研究[J]. 材料导报, 2020, 34(Z1): 572-575.
[12] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[13] 刘亮, 汪志太, 杨伟, 王振军, 蔡长春, 余欢. 铜模喷铸Mg-6Al-1Y合金快冷组织形成及其固溶行为[J]. 材料导报, 2020, 34(20): 20066-20069.
[14] 刘晓燕, 张琪, 高飞龙, 杨西荣, 罗雷, 柳奎君. 复合变形制备超细晶工业纯钛的研究进展[J]. 材料导报, 2020, 34(19): 19111-19116.
[15] 狄淑贤, 赖泳爵, 邱武, 林乃波, 詹达. 基于简单液相法对单层二硒化钨表面电荷掺杂的研究[J]. 材料导报, 2020, 34(12): 12025-12029.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed