Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 593-599    
  高分子与聚合物基复合材料 |
Plackett-Burman设计结合响应面法优化可溶性微针的制备工艺
刘哲, 刘勇, 高广志, 李奇贵, 包阳阳, 马凤森
浙江工业大学药学院生物制剂与材料实验室,杭州 310014
Optimization of Preparation Process of Dissolving Microneedles by Plackett-Burman Design and Response Surface Analysis
LIU Zhe, LIU Yong, GAO Guangzhi, LI Qigui, BAO Yangyang, MA Fengsen
Laboratory of Biologicals and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
下载:  全 文 ( PDF ) ( 2994KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了制备工艺对可溶性微针的机械、穿刺和吸湿性能的影响,并优化微针的制备工艺。采用Plackett-Burman设计筛选主要影响因素,运用Box-Behnken设计-响应面法优化微针的制备工艺。通过3D显微镜和扫描电子显微镜观察微针的外观形态,石蜡膜穿刺法评估微针的穿刺性能,称重法考察微针的吸湿性能,物性分析仪表征微针的机械性能,组织学切片验证微针穿刺皮肤的可行性。结果表明,微针韧脆材料比(P=0.002 3)、药物占比(P=0.007 5)、固化温度(P=0.001 3)、空气流速(P=0.002 7)和离心时间(P=0.002 8)对穿刺性能具有显著影响;微针韧脆材料比(P=0.017 7)对机械性能具有显著影响;各种因素对吸湿性能无显著影响。最优微针制备工艺参数为:韧脆材料比:9,50,药物占比:6.0%,溶媒占比60%,离心转速4 000 r/min,离心时间28 min,离心温度25 ℃,干燥温度38 ℃,干燥湿度10%,空气流速0.5 L·min-1,微针的刺入深度为(412.03±2.85)μm,与预测值的偏差小于1%。最优微针的应力可达1.3 N/针,可成功刺破角质层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘哲
刘勇
高广志
李奇贵
包阳阳
马凤森
关键词:  Plackett-Burman设计  Box-Behnken设计-响应面法  可溶性微针  制备工艺    
Abstract: The aim of this study was to explore the influence of preparation process on the mechanical, puncture and moisture absorption perfor-mance of dissolving microneedles, and optimize the preparation process. The Plackett-Burman design was adopted to screen the major influential factors, then the preparation process of microneedles was optimized by Box-Behnken design-response surface methodology. 3D microscope and scanning electron microscope were used to observe the morphological appearance of the microneedles. The puncture perfor-mance was examined by parafilm puncturing method, the moisture absorption performance was calculated by weighing method, and a texture analyzer was applied to investigate the mechanical properties, the feasibility of microneedles puncturing into the skin was verified by histological sections. The results showed that the ratio of tough and brittle material of the microneedles (P=0.002 3), the percentage of the drug (P=0.007 5), dry temperature (P=0.001 3), air velocity (P=0.002 7) and centrifugal time (P=0.002 8) had a significant effect on the puncture performance, the ratio of tough and brittle material (P=0.017 7) had a significant effect on the mechanical properties, and various parameters in the test had no significant in-fluence on the moisture absorption performance. The optimal preparation process parameters of microneedles was as follows, the ratio of the tough and brittle material was 9,50, the percentage of drug was 6.0%, the percentage of solvent was 60%, centrifugal speed was 4 000 r/min, centrifugal time was 28 min, centrifugal temperature was 25 ℃, drying temperature was 38 ℃, drying humidity was 10%, air velocity was 0.5 L·min-1, the puncture depth of the microneedles was (412.03±2.85) μm, the deviation between the verification values and the predicted value was less than 1%. The force of the optimal microneedles can reach 1.3 N/needle, which can successfully puncture the stratum corneum.
Key words:  Plackett-Burman design    Box-Behnken design-response surface methodology    dissolving microneedles    preparation process
               出版日期:  2021-11-25      发布日期:  2021-12-09
ZTFLH:  R944.9  
基金资助: 浙江省重点科技创新团队计划资助(2013TD15)
通讯作者:  merrigen@126.com   
作者简介:  刘哲,2019年毕业于河北科技大学药学专业,获得理学学士学位。现为浙江工业大学药学院硕士研究生,在马凤森教授的指导下进行研究。目前主要研究领域为可溶性微针的制备工艺和疫苗的递送。
马凤森,浙江工业大学教授,博士研究生导师。担任浙江省药学会生物制药和医疗器械两个专业委员会的主要负责人。带领的实验室多年来专业从事经皮新型药物制剂、生物药物和生物材料等的研究开发工作。
引用本文:    
刘哲, 刘勇, 高广志, 李奇贵, 包阳阳, 马凤森. Plackett-Burman设计结合响应面法优化可溶性微针的制备工艺[J]. 材料导报, 2021, 35(z2): 593-599.
LIU Zhe, LIU Yong, GAO Guangzhi, LI Qigui, BAO Yangyang, MA Fengsen. Optimization of Preparation Process of Dissolving Microneedles by Plackett-Burman Design and Response Surface Analysis. Materials Reports, 2021, 35(z2): 593-599.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/593
1 张振波, 房德敏. 天津药学, 2018,30(6),40.
2 Alkilani A Z, McCrudden M T, Donnelly R F. Pharmaceutics, 2015, 7(4),438.
3 Panda A, Shettar A S, Sharma P K, et al. International Journal of Pharmaceutics, DOI:10.1016/j.ijpharm.2020.120104.
4 章捷, 马凤森, 占浩慧, 等. 材料导报, 2017, 31(19),129.
5 周友军, 杨云珂, 桂双英. 中国新药杂志, 2013, 22(2),177.
6 姚明杰, 赵锋, 马银玲, 等. 中国药学杂志, 2019, 54(20),1677.
7 Thiruchelvi R, Venkataraghavan R, Sharmila D. Materials Today, 2021, 37, 1859.
8 Liu R S, Tang Y J.Bioresource Technology, 2010, 101,3139.
9 蒋征, 王红, 吴启南. 中药材, 2015, 38(6),1283.
10 李蓉蓉, 王缘, 刘勇, 等. 药学学报, 2021, 56(4),1163.
11 Larraneta E, Donnelly, et al. International Journal of Pharmaceutics, 2014, 472,65.
12 曾建伟, 张珍丽, 李西海, 等. 中国药学杂志, 2020, 55(11),883.
13 Lee D S, Li C G, Ihm C,et al. Sensors and Actuators B Chemical, 2018, 255,384.
14 Poirier D, Renaud F, Dewar V, et al.Biomaterials, 2017, 145, 256.
15 Choi I J, Kang A, Ahn M H, et al. Journal of Controlled Release, 2018, 286,460.
16 Kyung H P, Eun Y O, Heejae H,et al. Clinical and Experimental Allergy, 2020, 50,1084.
17 Shayan F L, Yoojung J, Yonghao M, et al. European Journal of Pharmaceutical Sciences, 2018, 117,290.
[1] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[2] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[3] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[4] 骆吉源, 肖国庆, 丁冬海, 种小川, 任金翠. 二硼化锆粉体合成研究现状与展望[J]. 材料导报, 2021, 35(21): 21159-21168.
[5] 陈运灿, 闫二虎, 狄翀博, 王金华, 黄浩然, 王豪, 刘威, 徐芬, 孙立贤. 5B族(Nb,V和Ta)合金渗氢膜的研究进展[J]. 材料导报, 2020, 34(21): 21001-21011.
[6] 李萌, 杨成博, 张静, 郑开宏. 轻质高熵合金的研究现状[J]. 材料导报, 2020, 34(21): 21125-21134.
[7] 李凯, 高文明, 杜莹, 李箭. 直接CH4固体氧化物燃料电池金属支撑体研究现状与发展[J]. 材料导报, 2020, 34(17): 17149-17154.
[8] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[9] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
[10] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[11] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[12] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[13] 占浩慧, 黄颖聪, 马凤森. 单一或复合高分子材料用于载药可溶性聚合物微针的制备[J]. 材料导报, 2019, 33(10): 1738-1744.
[14] 成小乐, 尹君, 屈银虎, 符寒光, 赵冰. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术[J]. 《材料导报》期刊社, 2018, 32(5): 796-807.
[15] 崔田路, 顾雪, 贾中秋, 尹晓桐, 曹中秋, 张轲. 不同工艺制备的纳米晶Ag-25Ni合金在NaCl溶液中的腐蚀性能[J]. 材料导报, 2018, 32(16): 2798-2802.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed