Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1738-1744    https://doi.org/10.11896/cldb.18040131
  高分子与聚合物基复合材料 |
单一或复合高分子材料用于载药可溶性聚合物微针的制备
占浩慧, 黄颖聪, 马凤森
浙江工业大学药学院,生物制剂与材料实验室,杭州 310014
Drug-loaded Dissolving Microneedles Prepared by Single or Composite Polymer Materials
ZHAN Haohui, HUANG Yingcong, MA Fengsen
Biologics and Biomaterials Laboratory, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014
下载:  全 文 ( PDF ) ( 12359KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微针是一种新型的经皮药物递送技术,近年来可溶性微针作为其中的一类引起了研究者极大的关注。本研究通过文献及实验筛选优化可溶性聚合物微针的最适制备工艺;选择透明质酸(HA)、硫酸软骨素(CS)、聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)、羧甲基纤维素(CMC)、甲基乙烯基醚-马来酸酐共聚物(Gantrez)和羟丙基甲基纤维素(HPMC)这几种常见的高分子材料,分别以单一或复合的方式将高分子材料制备为载有模型药物盐酸利多卡因的可溶性聚合物微针。微针阴模模具通过金属微针倒模制得,可溶性微针通过阴模浇注制得。根据材料和药物的溶解性,以针型和气泡现象作为评判指标筛选出去离子水作为合适的微针制备溶剂。微针基质溶液中的气泡可以通过离心法快速、有效地去除。以外观形态、力学性能及吸湿性为评价指标,研究各个聚合物材料制备载药可溶性聚合物微针的可行性。调整优化处方中各个组分间的比例,以筛选出力学性能优良、不易吸湿且载有大剂量药物的聚合物材料;并对最优处方制备的可溶性微针进行表征及力学性能评价。结果表明,以Gantrez S-97和HPMC这两种高分子材料复合制备的微针能载有70%的盐酸利多卡因,可顺利穿刺皮肤,力学性能优良且不易吸潮,可实现大剂量药物的顺利递送。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
占浩慧
黄颖聪
马凤森
关键词:  可溶性微针  盐酸利多卡因  高分子材料  力学性能  高载药量    
Abstract: Microneedles is a novel type of transdermal drug delivery technology based on macromolecule polymers. The research of dissolving microneedles has aroused enormous attention, recently. The optimum preparation conditions of dissolving microneedles were optimized through lite-rature review and experiments. Several common polymer materials including hyaluronic acid (HA), chondroitin sulfate (CS), polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), poly(methylvinylether-co-maleic anhydride) (Gantrez) and hydroxypropyl methyl cellulose (HPMC) were selected to synthesize the dissolving microneedles in a single or composite manner, in which model drug lidocaine hydrochloride was loaded. Specifically, the female mold was made from metal microneedles by reverse mould method, and the dissolving microneedles were prepared by casting method. According to the solubility of the polymer materials and the model drug, the suitable solvent for preparing microneedles was screened out. Dissolving microneedles prepared with distilled water presented favorable needle shape and less bubbles. Bubbles in matrix solution could be eliminated by centrifugation in a fast and efficient way. Taking the morphology, mechanical pro-perty and hygroscopicity as the evaluation indicators, the feasibility of preparing drug-loaded dissolving microneedles from various polymer materials was studied. The proportions of the various components were adjusted and optimized to find out the polymer materials with excellent mechanical properties, moisture resistance and high drug loading amount. Dissolving microneedles prepared by optimal parameters were characterized by SEM and skin puncture experiment. The results indicated that the microneedles prepared by macromolecule polymers of Gantrez S-97 and HPMC at a mass ratio of 4∶1 were able to load with 70wt% lidocaine hydrochloride. It possessed excellent mechanical properties and slight hygroscopicity, which could easily penetrate into the skin and realize the smooth delivery of large dosage of drugs.
Key words:  dissolving microneedles    lidocaine hydrochloride    polymer materials    mechanical properties    high drug loading
                    发布日期:  2019-05-16
ZTFLH:  R944.9  
基金资助: 浙江省重点科技创新团队项目 (2013TD15)
通讯作者:  merrigen@126.com   
作者简介:  占浩慧,2016年6月毕业于武汉工程大学药物制剂专业,获得理学学士学位。现为浙江工业大学药学院硕士研究生,在马凤森教授的指导下进行研究。目前主要研究领域为基于可溶性聚合物微针的生物活性分子经皮递送。马凤森,浙江工业大学教授,硕士研究生导师。作为浙江省药学界的资深专家,担任浙江省药学会生物制药和医疗器械两个专业委员会的主要负责人。带领的实验室多年来专业从事经皮新型药物制剂、生物药物和生物材料等的研究开发工作,积累了相关研究工作与团队、共性关键技术、系列产品应用等方面的基础,尤其是近些年来对微针阵列技术的系统深入研究。业已申请/获得多项国家发明专利,发表了多篇论文。
引用本文:    
占浩慧, 黄颖聪, 马凤森. 单一或复合高分子材料用于载药可溶性聚合物微针的制备[J]. 材料导报, 2019, 33(10): 1738-1744.
ZHAN Haohui, HUANG Yingcong, MA Fengsen. Drug-loaded Dissolving Microneedles Prepared by Single or Composite Polymer Materials. Materials Reports, 2019, 33(10): 1738-1744.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040131  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1738
1 Ye Y, Yu J, Wen D, et al. Advanced Drug Delivery Reviews, 2018, 127, 106.
2 Ma F S, Zhan H H, Huang Y C, et al.Fine Chemicals, 2018, 35(4), 541( in Chinese).
马凤森, 占浩慧, 黄颖聪,等. 精细化工, 2018, 35(4), 541.
3 Huang Y C, Ma F S, Zhan H H, et al.Progress in Biochemistry and Biophysics, 2017, 44(9), 757(in Chinese).
黄颖聪, 马凤森, 占浩慧,等. 生物化学与生物物理进展, 2017, 44(9), 757.
4 Martin C J, Allender C J, Brain K R, et al.Journal of Controlled Release, 2012, 158(1), 93.
5 Fukushima K, Ise A, Morita H, et al.Pharmaceutical Research, 2011, 28(1), 7.
6 Raphael A P, Prow T W, Crichton M L, et al.Small, 2010, 6(16), 1785.
7 Cha K J, Kim T, Park S J, et al.Journal of Micromechanics and Microengineering, 2014, 24(11), 115015.
8 Lee I C, Wu Y C, Tsai S W, et al.RSC Advances, 2017, 7(9), 5067.
9 Ito Y, Maeda T, Fukushima K, et al.Chemical and Pharmaceutical Bulletin, 2010, 58(4), 458.
10 Wendorf J R, Ghartey-Tagoe E B, Williams S C, et al.Pharmaceutical Research, 2011, 28(1), 22.
11 Tsioris K, Raja W K, Pritchard E M, et al.Advanced Functional Mate-rials, 2012, 22(2), 330.
12 Liu S, Jin M, Quan Y, et al.European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86(2), 267.
13 Zhang J, Ma F S, Zhan H H, Huang Y C.Materials Review A: Review Papers, 2017, 31(10), 129( in Chinese).
章捷, 马凤森, 占浩慧,等. 材料导报:综述篇, 2017, 31(10),129.
14 Kim J Y, Han M R, Kim Y H, et al.European Journal of Pharmaceutics and Biopharmaceutics, 2016, 105, 148.
15 Pearton M, Saller V, Coulman S A, et al.Journal of Controlled Release, 2012, 160(3), 561.
16 Kochhar J S, Soon W J, Choi J, et al.Journal of Pharmaceutical Sciences, 2013, 102(11), 4100.
17 Kim J D, Kim M, Yang H, et al.Journal of Controlled Release, 2013, 170(3), 430.
18 Pan C, Chen K, Jiang L, et al.Journal of Materials Processing Technology, 2016, 227, 251.
19 Donnelly R F, Majithiya R, Singh T R R, et al. Pharmaceutical Research, 2011, 28(1), 41.
20 Wang Q L, Ren J W, Chen B Z, et al.Journal of Industrial and Engineering Chemistry, 2017, 59, 251.
21 Park J H, Allen M G, Prausnitz M R.Pharmaceutical Research, 2006, 23(5), 1008.
22 Kalluri H, Kolli C S, Banga A K. AAPS PharmSciTech, 2011, 13(3), 473.
23 Gomaa Y A, Morrow D I J, Garland M J, et al.Toxicol In Vitro, 2010, 24(7), 1971.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed