Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 501-507    
  高分子与聚合物基复合材料 |
转铁蛋白在纳米靶向药物递送体系的应用
义水灵, 熊向源
江西科技师范大学生命科学学院,南昌 330013
Application of Transferrin in Nano-sized Targeted Drug Delivery Systems
YI Shuiling, XIONG Xiangyuan
School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 2292KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米靶向药物递送体系(Targeting drug delivery system,TDDS)是诊断和治疗癌症的一种有效方法,因其在特定的肿瘤部位高度累积,且药物毒副作用小和生物利用度高,而受到广泛关注。转铁蛋白受体在多数癌细胞表面过度表达,但在正常细胞表面低表达或未表达,与转铁蛋白配体具有高度的亲和力。转铁蛋白偶联的TDDS具有靶向性强、毒副小等优点。本文主要论述转铁蛋白受体介导TDDS的靶向作用机制、常见转铁蛋白功能化纳米药物递送载体的类型以及三类仍处于临床前研究的转铁蛋白功能化纳米TDDS,旨在为肿瘤靶向给药的进一步研究提供参考和新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
义水灵
熊向源
关键词:  靶向药物递送体系  转铁蛋白  靶向  药物载体  纳米粒子    
Abstract: Nano-sized targeted drug delivery systems (TDDS) are the effective method for the diagnosis and treatment of cancer, which is highly accumulated in specific tumor sites, with low side effects and high bioavailability, so it has attracted wide attention. Transferrin receptors are overexpressed on the surface of most cancer cells, but low or not expressed on the surface of normal cells, and have a high affinity with transferrin ligand. Transferrin-coupled TDDS have the advantages of strong targeting and less toxic side effects. This paper mainly discusses the targeting mechanism of TDDS mediated by transferrin receptor, the types of common transferrin functionalized nano-sized targeted drug delivery carriers and three kinds of transferrin functionalized nano-sized TDDS which are still in preclinical research, so as to provide reference and new ideas for further research of TDDS.
Key words:  targeted drug delivery system    transferrin    targeted    drug carrier    nanoparticles
                    发布日期:  2021-12-09
ZTFLH:  TB324  
  R73  
基金资助: 国家自然科学基金(21664007)
通讯作者:  xy.xiong@qq.com   
作者简介:  义水灵,2020 年毕业于湖南医药学院医学检验技术。现为江西科技师范大学生命科学学院硕士研究生,在熊向源教授的指导下进行研究。目前主要研究方向为高分子生物医药材料,转铁蛋白靶向纳米药物的合成及表征,以及相关细胞毒性和药物摄取等。
熊向源,江西科技师范大学教授,江西省主要学科学术和技术带头人,被评为2009年江西省百千万人才工程人选,2010年度南昌市劳动模范(先进工作者)。2001年于北京大学获高分子化学与物理硕士学位,同年8月前往新加坡南洋理工大学攻读博士学位,于2005年5月获博士学位,其中2004年8月至2005年3月任新加坡-美国麻省理工联盟研究助理。2005年加入江西科技师范学院生命科学学院工作,同年12月被评为教授。主要从事纳米级高分子药物载体的研究,包括生物相容性和生物可降解性嵌段共聚物的可控合成及表征,高分子纳米粒子在水中的聚集形态和大小,纳米粒子在生物医药领域的应用研究,尤其是可控释放体系、靶向释放体系等。在Journal of ControlledRelease、Nanomedicine等期刊上发表了20余篇SCI论文。获得2007—2008年度江西省高等学校科技成果奖二等奖,2009年度江西省自然科学奖三等奖。
引用本文:    
义水灵, 熊向源. 转铁蛋白在纳米靶向药物递送体系的应用[J]. 材料导报, 2021, 35(z2): 501-507.
YI Shuiling, XIONG Xiangyuan. Application of Transferrin in Nano-sized Targeted Drug Delivery Systems. Materials Reports, 2021, 35(z2): 501-507.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/501
1 Wang Z, Zhi K, Ding Z, et al. Seminars in Cancer Biology, 2021, 69, 77.
2 Tran P H L, Xiang D, Tran T T D, et al. Advanced Materials, 2020, 32(18), e1904040.
3 Agrawal M, Saraf S, Saraf S, et al. Journal of Controlled Release, 2020, 321, 372.
4 Sharma G, Lakkadwala S, Modgil A, et al. International Journal of Molecular Sciences, 2016, 17(6),806.
5 Zhang Y, Sun T, Jiang C. Acta Pharmaceutica Sinica B, 2018, 8(1), 34.
6 Fernandes M A, Hanck-Silva G, Baveloni F G, et al. Critical Reviews in Analytical Chemistry, 2020, 51(5), 399.
7 Jhaveri A, Luther E, Torchilin V. Journal of Drug Targeting, 2019, 27(5-6), 601.
8 Muddineti O S, Kumari P, Ghosh B, et al. Pharmaceutical Research, 2018, 35(5), 97.
9 Agrawal P, Sonali, Singh R P, et al. Colloids and Surfaces B: Biointerfaces, 2017, 152, 277.
10 Gammella E, Buratti P, Cairo G, et al. Metallomics, 2017, 9(10), 1367.
11 Johnsen K B, Burkhart A, Thomsen L B, et al. Progress in Neurobiology, 2019, 181, 101665.
12 Khan A I, Liu J, Dutta P. Biochim Biophys Acta General Subjects, 2018, 1862(5), 1168.
13 Choudhury H, Pandey M, Chin P X, et al. Drug Delivery and Translational Research, 2018, 8(5), 1545.
14 Dos Santos Rodrigues B, Kanekiyo T, Singh J. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 28, 102225.
15 Olsman M, Sereti V, Muhlenpfordt M, et al. Ultrasound in Medicine & Biology, 2021, 47(5), 1343.
16 Wu S, Fu J, Liu D, et al. American Chemical Society Biomaterials Science & Engineering, 2020, 6(11), 6207.
17 Fang Z, Sun Y, Cai C, et al. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 70(1), 27.
18 Pardo J, Peng Z, Leblanc R M. Molecules, 2018, 23(2),378.
19 Aires Fernandes M, Eloy J O, Tavares Luiz M, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611,125806.
20 Wang K, Shang F, Chen D, et al. Journal of Nanobiotechnology, 2021, 19(1), 31.
21 Alsawaftah N M, Awad N S, Paul V, et al. Scientific Reports, 2021, 11(1), 11589.
22 Fu J, Li W, Xin X, et al. Journal of Pharmaceutical Sciences, 2020, 109(8), 2426.
23 Dos Santos Rodrigues B, Lakkadwala S, Kanekiyo T, et al. Journal of pharmacology and experimental therapeutics, 2020, 374(3), 354.
24 Lakkadwala S, Singh J. Colloids and Surfaces B: Biointerfaces, 2019, 173, 27.
25 Zou W, Sarisozen C, Torchilin V P. Journal of Drug Targeting, 2017, 25(3), 225.
26 Zhang X, Zhao L, Zhai G, et al. Medical Science Monitor, 2019, 25, 9737.
27 Debele T A, Wu P C, Wei Y F, et al. Cancers, 2021, 13(10), 2375.
28 Wei Y, Gu X, Cheng L, et al. Acta Biomaterialia, 2019, 92, 196.
29 Wei Y, Gu X, Sun Y, et al. Journal of Controlled Release, 2020, 319, 407.
30 Li J, Lee M M S, Li H, et al. American Chemical Society Appl Mater Interfaces, 2020, 12(26), 29641.
31 Bhatt H, Rompicharla V K, Ghosh B, et al. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 14(24), 3159.
32 Hu Q, Wang Y, Xu L, et al. International Journal of Nanomedicine, 2020, 15, 2751.
33 Zhang Q, Li J, Tang P, et al. Nanomaterials (Basel), 2019, 9(10), 1373.
34 Zhou Y, Zhou J, Wang F, et al. Talanta, 2018, 181, 248.
35 Saini K, Bandyopadhyaya R. American Chemical Society Applied Nano Materials, 2019, 3(1), 229.
36 Chen X, Sun H, Hu J, et al. Colloids and Surfaces B: Biointerfaces, 2017, 152, 77.
37 Li S, Amat D, Peng Z, et al. Nanoscale, 2016, 8(37), 16662.
38 Hettiarachchi S D, Graham R M, Mintz K J, et al. Nanoscale, 2019, 11(13), 6192.
39 Praphakar R A, Munusamy M A, Rajan M. International Journal of Pharmaceutics, 2017, 524(1-2), 168.
40 Wang G, Zhao X, Wu H, et al. Small, 2020, 16(39), e2003654.
41 Montalvo-Quiros S, Aragoneses-Cazorla G, Garcia-Alcalde L, et al. Nanoscale, 2019, 11(10), 4531.
42 Singh R P, Sharma G, Sonali, et al. Materials Science & Engineering C: Materials for Biological Applications, 2016, 67, 313.
43 Zhang T, Guo W, Zhang C, et al. American Chemical Society Applied Materials & Interfaces, 2017, 9(19), 16006.
44 Kim S S, Harford J B, Moghe M, et al. International Journal of Cancer, 2019, 145(9), 2535.
45 Shi J, Kantoff P W, Wooster R, et al. Nature Reviews: Cancer, 2017, 17(1), 20.
46 Kim S S, Harford J B, Moghe M, et al. Oncoimmunology, 2018, 7(10), e1484982.
47 Pirollo K F, Nemunaitis J, Leung P K, et al. Molecular Therapy, 2016, 24(9), 1697.
48 He H, Liu L, Morin E E, et al. Accounts of Chemical Research, 2019, 52(9), 2445.
49 Siefker-Radtke A, Zhang X Q, Guo C C, et al. Molecular Therapy, 2016, 24(8), 1484.
50 Meel R V D, Vehmeijer L J, Kok R J, et al. Advanced Drug Delivery Reviews, 2013, 65(10), 1284.
51 Zuckerman J E, Gritli I, Tolcher A, et al. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(31), 11449.
[1] 雷颖, 葛冲冲, 冯瑾, 尚娇娇. pH响应型三维纳米纤维的构建及其性能研究[J]. 材料导报, 2021, 35(z2): 508-512.
[2] 廖培义, 陈延明, 王立岩, 高洁. 醇-水体系无表面活性剂纳米ZnO的制备及表征[J]. 材料导报, 2021, 35(Z1): 108-111.
[3] 马长坡, 刘兴琛, 李永赞, 张健, 亢敏霞, 邱祖民. 聚丙烯酸酯材料改性技术概况[J]. 材料导报, 2021, 35(15): 15212-15219.
[4] 姜佳敏, 李盼盼, 方斌, 杜威, 柏桦, 彭勃, 李林. 蛋白质药物胞内递送纳米载体的研究进展[J]. 材料导报, 2021, 35(13): 13186-13197.
[5] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[6] 张雪雁, 孟昭旭, 廉鹤. 普鲁士蓝基纳米粒子在癌症治疗及成像中的应用进展[J]. 材料导报, 2020, 34(Z2): 95-98.
[7] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[8] 张晓琳, 丰晓婷, 詹世平, 卢春兰, 李鸣明, 侯维敏. 基于双硫键的荧光传感器在生物检测及靶向治疗药物输送系统中的应用[J]. 材料导报, 2020, 34(5): 5142-5147.
[9] 王瑞瑞. 角蛋白基生物功能材料的研究现状与发展前景[J]. 材料导报, 2020, 34(21): 21199-21204.
[10] 王斌, 罗晓宇, 王琛, 周晓蕊, 胡颖晖, 房二鑫. 纳米Al2O3粒子含量对碳泡沫复合材料力学和高温氧化性能的影响[J]. 材料导报, 2020, 34(18): 18159-18164.
[11] 杨磊, 杨志, 连锋. 碳量子点作为生物相容性发光材料在再生医学方面的应用[J]. 材料导报, 2019, 33(Z2): 1-9.
[12] 孙莉, 陈延明. SDS表面修饰纳米ZnO制备及抗菌性能研究[J]. 材料导报, 2019, 33(Z2): 89-91.
[13] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[14] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[15] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed