Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 508-512    
  高分子与聚合物基复合材料 |
pH响应型三维纳米纤维的构建及其性能研究
雷颖, 葛冲冲, 冯瑾, 尚娇娇
四川大学轻工科学与工程学院,成都 610065
Fabrication and Performance of pH-responsive Polymer-based 3D Nanofibers
LEI Ying, GE Chongchong, FENG Jin, SHANG Jiaojiao
College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 2685KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以甲基丙烯酸二乙氨基乙酯(DEAEMA)、甲基丙烯酸甲酯(MMA)和4-丙烯酰氧基二苯甲酮(ABP)为反应单体,采用自由基聚合法制备可光引发交联的共聚物P(DEAEMA-co-MMA-co-ABP)及其纳米纤维。利用傅里叶变换红外光谱仪(FT-IR)、核磁(1H NMR)和凝胶渗透色谱分析仪(GPC)确定共聚物的化学结构和分子量;采用热失重分析仪(TGA)和差示扫描量热仪(DSC)对该共聚物的玻璃化转变温度以及热稳定性进行测试,表明主链季碳原子上空间位阻较大的MMA和刚性ABP有助于提高共聚物的玻璃化转变点和热稳定性;利用分光光度计测试共聚物在不同pH值溶液中的吸光度,证明其pH响应性能;通过光学及扫描电子显微镜(SEM)对纳米纤维形貌进行表征,并研究交联纳米纤维的pH响应性。实验结果表明,DEAEMA、MMA、ABP物质的量比为80∶10∶10的聚合物表现出敏感的pH响应性能和高效的光交联性能,且在DMF、THF体积比为1∶9,固含量浓度为40wt%的条件下,聚合物可纺制成形貌均匀的纳米纤维。交联后的三维纳米纤维在酸碱溶液中具有可逆的溶胀和收缩的性能,有望被应用于药物控释及组织载体领域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷颖
葛冲冲
冯瑾
尚娇娇
关键词:  pH响应性能  pH响应聚合物  纳米纤维  药物载体    
Abstract: Diethyl methacrylate (DEAEMA), methyl methacrylate (MMA) and 4-acrylloxybenzophenone (ABP) were used as monomers to prepare a series of photo-initiable cross-linked polymer P(DEAEMA-co-MMA-co-ABP) by free radical polymerization and then the synthesized copolymer was spun to be nanofibers. Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic field (1H NMR), gel penetration chromatography (GPC), thermogravimetric analysis (TGA) were used to test and characterize the chemical composition, structure and properties of the copolymers. The morphology of the nanofibers was characterized by optical and scanning electron microscopy (SEM), and the pH responsiveness of both synthesized copolymer and the cross-linked nanofibers were studied via changing the pH of solutions. The results show that the copolymer with 80∶10∶10 molar ratio of DEAEMA/MMA/ABP exhibits sensitive pH response, and the nanofibers with uniform morphology can be spun under the conditions with volume ratio of DMF/THF at 1∶9 and mass concentration of copolymer at 40wt%. Moreover, the cross-linked 3D nanofibrous mats have the properties of reversible swelling and contraction in acid-base solutions. Such nanofibrous mats can be used in the fields of controlled drug release and tissue carrier.
Key words:  pH responsive behavior    pH-responsive polymer    nanofiber    drug carrier
                    发布日期:  2021-12-09
ZTFLH:  O63  
基金资助: 中央高校基本科研业务费专项资金(YJ201959);四川省科技厅项目(2021YJ0290)
通讯作者:  jiaoj.shang@scu.edu.cn   
作者简介:  雷颖,四川大学轻工科学与工程学院纺织材料系2017级本科生,在校期间承担一项大学生创新创业省级项目,主要研究工作是通过自由基聚合合成刺激响应聚合物,并构建基于热和pH响应的纳米纤维释药载体和多重响应性驱动器。
尚娇娇,四川大学轻工科学与工程学院特聘副研究员。尚娇娇教授博士毕业于德国汉堡大学化学系,2019年作为四川大学海外人才引进特聘副研究员,目前在四川大学轻工科学与工程学院从事以下研究:(1)基于现代合成技术与分子修饰技术研究响应型“智能”材料在软性驱动器和感应器上的应用;(2)生物质材料在先进材料科学领域的应用。围绕刺激响应型智能材料主要合成了一系列刺激响应活性官能团单体,利用可控聚合手段,结合纳米后功能化、点击化学等技术构建纳米纤维感应器、驱动器以及响应型药物运输与释放体系等。在生物质材料开发方面,主要从事天然材料在光学材料和生物医学应用方向的研发。基于上述研究,在国内外期刊发表论文50余篇。目前承担一项四川省科技厅横向项目、四川大学人才引进启动项目、创新团队自主研发项目以及多项企业项目。
引用本文:    
雷颖, 葛冲冲, 冯瑾, 尚娇娇. pH响应型三维纳米纤维的构建及其性能研究[J]. 材料导报, 2021, 35(z2): 508-512.
LEI Ying, GE Chongchong, FENG Jin, SHANG Jiaojiao. Fabrication and Performance of pH-responsive Polymer-based 3D Nanofibers. Materials Reports, 2021, 35(z2): 508-512.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/508
1 Gao Y, Wei M, Li X. et al.Macromolecular Research, 2017, 25, 513.
2 Li Z, Li G, Hu Y.Progress in Chemistry, 2017, 29(12), 1480.
3 Joseph S K, Sabitha M, Nair S C. Advanced Pharmaceutical Bulletin, 2020, 10(1), 1.
4 Tang H, Zhao W, Yu J. et al. Molecules. 2019, 24(1), 4.
5 Ye M, Zhao Y, Wang Y. et al.Advanced Functional Materials,2020, 30(39), 2002655.
6 Kocak G, Tuncer C, Bütün V.Polymer Chemistry,2017,8, 144.
7 Li S, Hu K, Cao W. et al.Nanoscale, 2014, 6, 13701.
8 Wu M, Chen J, Huang W. et al. Biomacromolecules , 2020, 21(6), 2409.
9 Cai X, Yang X, Wang F. et al.Journal of Biomedical Nanotechnology, 2016, 12(7), 1453.
10 Deirram N, Zhang C, Kermaniyan S S. et al. Macromolecular Rapid Communications,2019,40(10),1800917.
11 Guo H, Tan S, Gao J. et al. Journal of Materials Chemistry B, 2020,8, 1759.
12 Gupta P, Purwar R.Journal of Polymer Research, 2020, 27(10),296.
13 Zhang J, Xu C, Ren Y. et al.Micro & Nano Letters, 2020, 15(8), 524.
14 赵玥,冯媛媛. 高分子材料科学与工程, 2020, 36(12), 116.
15 谢贤莉,张培松,刘春华,等. 高分子材料科学与工程, 2020, 36 (8),146.
16 Chen S, Sun G.ACS Applied Materials & Interfaces,2013, 5 (14), 6473.
17 Ding B, Wang M, Wang X. et al.Materials Today,2010, 13, 16.
18 Wang Y, Liang Z, Su Z. et al.ACS Applied Bio Materials, 2018, 1, 1398.
19 Khodadadi M, Alijani S, Montazeri M. et al.Journal of Biomedical Materials Research. Part A,2020, 108(7),1444.
20 Thao N T T, Lee S, Shin G R. et al. Pharmaceutics,2021, 13(2), 253.
21 Tort S, Han D, Steckl A J. International Journal of Pharmaceutics, 2020,579(15),11964.
22 Shang J, Lin S, Theato P.Polymer Chemistry,2017, 8,7446.
[1] 义水灵, 熊向源. 转铁蛋白在纳米靶向药物递送体系的应用[J]. 材料导报, 2021, 35(z2): 501-507.
[2] 岳青, 王绍德, 徐飞, 刘涛. 静电纺丝技术及其在各领域中的应用[J]. 材料导报, 2021, 35(Z1): 594-599.
[3] 李林刚, 胡雪燕, 李刚, 蔡以兵. 电纺Al2O3纳米纤维毡的制备及染料吸附脱色性能[J]. 材料导报, 2021, 35(12): 12008-12013.
[4] 魏洁, 邵自强. 纳米纤维素材料在功能膜材料中的应用研究进展[J]. 材料导报, 2021, 35(1): 1203-1211.
[5] 时钢印, 高秋菊. 基于专利视角的口罩用纳米纤维膜发展研究[J]. 材料导报, 2020, 34(Z1): 552-556.
[6] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[7] 王瑞瑞. 角蛋白基生物功能材料的研究现状与发展前景[J]. 材料导报, 2020, 34(21): 21199-21204.
[8] 汪心坤, 赵芳, 王建江. 煅烧温度对Zn0.96Co0.04O纳米纤维吸波性能的影响[J]. 材料导报, 2020, 34(14): 14034-14038.
[9] 汪心坤, 赵芳, 王建江. Zn1-xCexO纳米纤维的电纺制备及其红外雷达兼容隐身性能[J]. 材料导报, 2019, 33(Z2): 83-88.
[10] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
[11] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[12] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[13] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[14] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[15] 黄艳萍, 但年华, 但卫华. 静电纺丝制备胶原基复合纳米医用纤维的研究进展[J]. 材料导报, 2019, 33(19): 3322-3327.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed