Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 194-199    
  无机非金属及其复合材料 |
基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究
苏昊1,2, 杨俊1,2,3, 周建庭1,2, 王劼耘3, 王宗山2, 马兴林2
1 重庆交通大学,省部共建山区桥梁及隧道工程国家重点实验室,重庆 400074
2 重庆交通大学土木工程学院,重庆 400074
3 广西交通设计集团,南宁 530029
Research on Axial Compression Performance of Corroded RC Columns Strengthened with UHPC Based on DIC
SU Hao1,2, YANG Jun 1,2,3, ZHOU Jianting1,2, WANG Jieyun3, WANG Zongshan2,MA Xinglin2
1 State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
3 Guangxi Communications Design Group Co., Ltd., Nanning 530029, China
下载:  全 文 ( PDF ) ( 5999KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究UHPC加固锈蚀后钢筋混凝土柱的力学性能、承载能力提升幅度以及破坏形态,本文设计了8根试件,通过电化学方式对所有试件进行锈蚀处理,再采用UHPC对部分试件加固,最后采用控制变量法分别对锈蚀率为10%、20%、30%的试验柱进行轴压破坏试验,采用DIC技术观测试件全场应变变化,对比分析了应变云图、极限承载力、峰值应变等参数。试验结果表明:未加固试件破坏形态随着锈蚀率的增加破坏更接近于脆性破坏,加固后试验柱破坏形态主要表现为UHPC加固层劈裂破坏;加固后试件极限承载能力提高幅度约为119%~128%,加固后试件破坏时只有一条主裂缝,整体性和抗裂性得到提高;加固后DIC应变云图更均匀,应变集中出现较早,更利于裂缝发展预测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏昊
杨俊
周建庭
王劼耘
王宗山
马兴林
关键词:  桥梁工程  超高性能混凝土  锈蚀加固  DIC  荷载滑移曲线  极限承载力    
Abstract: In order to study the mechanical properties, bearing capacity improvement and failure mode of corroded reinforced concrete columns streng-thened by UHPC, a total of 8 specimens were designed. All specimens were corroded by electrochemical method, and then some specimens were strengthened by UHPC. Finally, the axial compression failure tests were carried out on the test columns with corrosion rates of 10%, 20% and 30% respectively by using the control variable method, DIC technology was used to observe the whole field strain changes of the specimens, and the strain nephogram, ultimate bearing capacity, peak strain and other parameters were compared and analyzed. The results show that the failure mode of the unreinforced specimens is closer to brittle failure with the increase of corrosion rate, and the failure mode of the strengthened columns is mainly split failure of UHPC strengthened layer; After reinforced, the ultimate bearing capacity of the specimens increases by 119% to 128%. When the specimens are damaged, there is only one main crack, and the integrity and crack resistance are improved; After reinforcement, DIC strain nephogram is more uniform and strain concentration appears earlier, which is more conducive to crack development prediction.
Key words:  bridge engineering    ultra-high performance concrete    corrosion reinforce    DIC    load sliding curve    ultimate bearing capacit
                    发布日期:  2021-12-09
ZTFLH:  TU3  
通讯作者:  yangjun@cqjtu.edu.cn   
作者简介:  杨俊,工学博士,重庆交通大学土木工程学院硕士生导师,现为省部共建山区桥梁及隧道工程国家重点实验室研究人员,主要从事桥梁工程相关的教学科研工作,研究方向包括:旧危桥梁加固与工程结构性能提升;桥梁新结构与超高性能混凝土(UHPC)材料等。发表论文14篇,第一作者SCI/EI收录5篇,主持国家自然科学基金青年科学基金项目1项、重庆市教委科技项目1项、重庆市科协项目1项。
苏昊,硕士研究生,2019年9月就读于重庆交通大学。主要从事UHPC在桥梁工程中运用领域的研究。
引用本文:    
苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
SU Hao, YANG Jun, ZHOU Jianting, WANG Jieyun, WANG Zongshan,MA Xinglin. Research on Axial Compression Performance of Corroded RC Columns Strengthened with UHPC Based on DIC. Materials Reports, 2021, 35(z2): 194-199.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/194
1 刘博宇, 田宇, 韩雪. 建筑与预算, 2012(3),131.
2 邵旭东,邱明红,晏班夫,等. 材料导报, 2017, 31(23),33.
3 Huiwen Tian, Zhen Zhou, Yi Zhang,et al. Engineering Structures, 2020, 210(7), 110403.
4 Mahsa Farzad, Amir Sadeghnejad, Siavash Rastkar,et al. Engineering Structures, 2020, 209, 109928.
5 Yanhua Liu, Lei Zeng, Sheng Xiang,et al. Construction and Building Materials, 2020, 260, 119883.
6 Yamaguchi I. Journal of corrosion Physics(E): Scientific Instruments, 1981, 14(5), 1270.
7 Dongyang Li, Peiyan Huang, Zhanbiao Chen,et al. Engineering Fracture Mechanics, 2020, 235, 107116.
8 冉文兴,周建庭,李晓庆,等.混凝土, 2019 (3), 60.
9 Sheikh S A U Z M. Journal of Structural Division, 1982, 12(108), 2703.
10 方小丹, 林斯嘉.建筑结构学报, 2014, 35(4), 236.
11 Mander J B P M J N. Journal of Structural Engineering, 1988, 114(8),1 804.
12 雷国强. 锈蚀钢筋混凝土偏心受压柱承载力试验研究. 硕士学位论文, 湖南大学, 2007.
13 惠云玲, 李荣, 林志伸, 等,工业建筑, 1997(6), 15.
14 钱稼茹, 程丽荣, 周栋梁, 等,清华大学学报(自然科学版), 2002(10), 1369.
[1] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[2] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[3] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[4] 周建庭, 胡天祥, 杨俊, 周璐, 孙航行. 键槽构造UHPC-NC界面黏结性能试验研究[J]. 材料导报, 2021, 35(16): 16050-16057.
[5] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[6] 邓宗才, 赵连志, 连怡红. 膨胀剂、减缩剂对超高性能混凝土圆环约束收缩性能的影响[J]. 材料导报, 2021, 35(12): 12070-12074.
[7] 刘二伟, 贾文清, 薛飞, 范敏郁, 於旻, 余伟炜. 基于PCVN小试样评估主管道的动态断裂韧性研究[J]. 材料导报, 2020, 34(Z2): 418-422.
[8] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[9] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[10] 徐彬彬, 欧忠文, 罗伟, 刘娜, 袁旺, 付来平. 饱水轻骨料和减缩剂对UHPC水化过程和自收缩的影响[J]. 材料导报, 2020, 34(22): 22065-22069.
[11] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[12] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[13] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[14] 张文华, 刘鹏宇, 吕毓静. 超高性能混凝土动态力学性能研究进[J]. 材料导报, 2019, 33(19): 3257-3271.
[15] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed