Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 188-193    
  无机非金属及其复合材料 |
基于半经验的UHPC配合比设计方法
杨玉柱1,2, 黄维蓉1,2, 耿嘉庆3, 崔通4, 晏茂豪2
1 重庆交通大学材料科学与工程学院,重庆 400074
2 重庆交通大学交通土建工程材料国家地方联合工程实验室,重庆 400074
3 广西路建工程集团有限公司,南宁 530001
4 保利长大工程有限公司,广州 511430
UHPC Mix Design Method Based on Semi-quantitative
YANG Yuzhu1,2, HUANG Weirong1,2, GENG Jiaqing3, CUI Tong4, YAN Maohao2
1 School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 Joint National Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China
3 Guangxi Lujian Engineering Group Co., Ltd., Nanning 530001, China
4 Poly Changda Engineering Co., Ltd., Guangzhou 511430, China
下载:  全 文 ( PDF ) ( 3924KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(UHPC)是国内外学者当下关注的热点,但对于UHPC配合比设计目前没有明确的规范。采用理论分析和试验相结合的方法提出一种基于半经验的UHPC配合比设计,首先按照参考文献胶凝材料配合比配制胶砂试件并测出其28 d抗压强度,其次使用Matlab拟合工具箱拟合UHPC 28 d抗压强度与水胶比、胶凝材料28 d强度的定量关系;再采用Mathematica拟合胶凝材料强度与水泥胶砂强度的关系,通过拟合公式确定水胶比,依据最大密实理论确定骨料的掺加比例,最后通过全体积计算方法确定UHPC配合比。在这之后对基于半经验的UHPC配合比设计方法进行了验证,测试了蒸养条件下的抗压强度与抗折强度。结果表明:根据拟合公式计算的理论配制强度与实际测试的抗压强度接近,其差值在抗压强度测量误差范围内,该配合比设计方法具有较好的可靠性,此方法为广大工作者设计UHPC提供了一种新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨玉柱
黄维蓉
耿嘉庆
崔通
晏茂豪
关键词:  半经验  超高性能混凝土  配合比设计  抗压强度    
Abstract: Ultra-high performance concrete (UHPC) is currently a hot spot for domestic and foreign scholars, but there is no explicit specification for the UHPC mix ratio design. This papercomes up with a semi-empirical UHPC mix design based on theoretical analysis and experiment. Firstly, the cement sand specimen was prepared according to the mix ratio of the cementitious material in reference, and then 28 d compressive strength was measured. Secondly, using Matlab fitting toolbox to fit UHPC the quantitative relationship between preparation strength and water-binder ratio and cementitious material strength. Thirdly, fitting the relationship between the strength of cementitious material and the strength of cement sand through Mathematica. Fourthly, the water-binder ratio is determined by the fitting formula. Then according to the maximum density theory to determine the proportion of aggregate addition. Finally, the UHPC mix ratio is determined by the whole product calculation method. After that, the semi-empirical UHPC mix ratio design method is verified; we tested the compressive strength and flexural strength of 28 d under stea-ming conditions. The results show that the theoretical strength calculated according to the fitting formula is close to the compressive strength mea-sured in practice. The difference is within the error range of compressive strength measurement. The mix ratio design method has good reliability. And this method provides a new way for workers to design UHPC.
Key words:  semi-quantitative    ultra-high performance concrete    mix design    compressive strength
                    发布日期:  2021-12-09
ZTFLH:  TU528.57  
基金资助: 广东省交通运输厅科技项目(科技-2017-02-012);重庆交通大学研究生科研创新项目(CYS20297)
通讯作者:  hwr228@163.com   
作者简介:  杨玉柱,硕士毕业于重庆交通大学材料科学与工程学院,目前为广西大学土木建筑工程学院博士研究生,主要从事土木工程材料领域的研究。
黄维蓉,重庆交通大学教授,主要从事高性能沥青混合料、高性能水泥混凝土、优质路面基层材料等研究与开发及路面施工技术研究工作。先后在国内外学术期刊及会议上发表学术论文70余篇,主持和主研国家级、省部级和厅局级科研项目30余项。
引用本文:    
杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
YANG Yuzhu, HUANG Weirong, GENG Jiaqing, CUI Tong, YAN Maohao. UHPC Mix Design Method Based on Semi-quantitative. Materials Reports, 2021, 35(z2): 188-193.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/188
1 Jones M R,Zheng L,Newands M D. Materials & Structures,2002,35 (5), 301.
2 Wang X,Wang K,Taylor P,et al. Construction & Building Materials, 2014,70, 439.
3 王海兵,刘咏,黄伯云,等. 粉末冶金技术, 2001,19(3), 208.
4 徐立斌, 董艺, 陈尚伟. 混凝土, 2015(1), 72.
5 胡翱翔, 梁兴文, 李东阳, 等. 湖南大学学报(自然科学版), 2018,45(3), 39.
6 张高展, 魏琦, 丁庆军, 等. 混凝土与水泥制品, 2020(1), 6.
7 袁明, 贺文杰, 颜东煌, 等. 中外公路, 2019,39(6), 169.
8 万朝均, 尹亚柳, 王小茜, 等. 硅酸盐通报, 2015,34(12), 3676.
9 孔德宇,姜绍杰,刘新伟,等. 水泥工程, 2017(1), 83.
10 肖江帆.常规工艺下超高性能混凝土的制备及性能研究. 硕士学位论文, 湖南大学, 2013.
11 丁庆军, 彭程,康琰, 等. 硅酸盐通报, 2019,38(2), 488.
12 王军委, 李秋义, 郭远新, 等. 混凝土, 2015(5), 34.
13 李传习,聂洁,潘仁胜,等. 硅酸盐通报, 2019,38(1),14.
14 高绪明. 钢纤维对超高性能混凝土性能影响的研究. 硕士学位论文, 湖南大学, 2013.
15 卢喆, 冯振刚, 姚冬冬, 等. 材料导报, 2020,34(S1), 203.
16 冯乃谦. 高性能与超高性能混凝土技术, 中国建筑工业出版社, 2015.
17 陈建奎, 王栋民. 硅酸盐学报, 2000(2), 103.
18 贾迪.超高性能混凝土搅拌引入气泡控制及其对强度的影响. 硕士学位论文, 哈尔滨工业大学,2017.
[1] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[2] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[3] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[4] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[5] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[6] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[7] 何晓雁, 张智鑫, 赵燕茹, 郝贠洪, 秦立达. 基于灰靶决策对BFCC力学性能及抗渗性能的评估[J]. 材料导报, 2021, 35(20): 20035-20039.
[8] 黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
[9] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[10] 李碧雄, 汪知文, 苏柳月, 冷发光. 减小EPS混凝土收缩的配合工艺试验研究[J]. 材料导报, 2021, 35(16): 16021-16027.
[11] 黄炜, 周烺, 葛培, 杨涛. 基于PSO-BP和GA-BP神经网络再生砖骨料混凝土强度模型的对比研究[J]. 材料导报, 2021, 35(15): 15026-15030.
[12] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[13] 邓宗才, 赵连志, 连怡红. 膨胀剂、减缩剂对超高性能混凝土圆环约束收缩性能的影响[J]. 材料导报, 2021, 35(12): 12070-12074.
[14] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[15] 樊梦琪, 王昊, 侯宇轩, 王惠维, 杨红健, 程庆彦, 罗学如. 磷酸二氢钠与硬脂酸钠复合改性发泡硫氧镁水泥[J]. 材料导报, 2021, 35(10): 10048-10054.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed