Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 183-187    
  无机非金属及其复合材料 |
超低温及低温循环对混凝土材料性能的影响
李凯雯1, 刘娟红1,2, 张超3, 段品佳3, 张博超3
1 北京科技大学土木与资源工程学院,北京 100083
2 北京科技大学城市地下空间工程北京市重点实验室,北京 100083
3 中海石油气电集团有限责任公司,北京 100028
Influence of Ultra-low Temperature and Low Temperature Cycles on Performance of Concrete Materials
LI Kaiwen1, LIU Juanhong1,2, ZHANG Chao3, DUAN Pinjia3, ZHANG Bochao3
1 College of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China
3 China National Offshore Petroleum Gas and Electricity Group Co., Ltd., Beijing 100028, China
下载:  全 文 ( PDF ) ( 7390KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对普通预应力混凝土作为液化天然气(LNG)储罐材料在超低温(-165 ℃)环境中力学性能显著退化的问题,本文研究并评价了低温高性能混凝土(LHC)的低温性能,并对其孔结构特征和低温循环后的力学性能进行分析。结果表明:LHC基体内部105~104 nm的毛细孔数量相对较少,LHC内毛细孔和气孔的体积以及总孔隙率均低于C60混凝土。低温循环后,LHC基体和C60混凝土内部结构发生一定程度的损伤,各种力学参数均呈下降趋势。与C60混凝土相比,在超低温环境中,LHC具有优异的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李凯雯
刘娟红
张超
段品佳
张博超
关键词:  混凝土  超低温  低温循环  孔结构  力学性能    
Abstract: The mechanical performance of prestressed concrete (LHC) as a material for liquefied natural gas (LNG) storage tanks is significantly degraded in the ultra-low temperature (-165 ℃) environment. The perdormance of low-temperature concrete was studied and evaluated in this paper, and the pore structure characteristics and mechanical properties of LHC after low-emperature cycles are analyzed. The results showed that the number of pores at 105 nm—104 nm in LHC matrix is relatively small, and the volume of pores, pores and total porosity in LHC are lower than those in C60 concrete. After cryogenic cycling, the LHC matrix and the internal structure of C60 concrete were damaged to a certain extent, and all the mechanical parameters showed a downward trend. Compared with C60 concrete, LHC has excellent mechanical performance at ultra-low temperature environment.
Key words:  concrete    ultra-low temperature    low temperature cycles    pore structure    mechanical performance
                    发布日期:  2021-12-09
ZTFLH:  TU528  
基金资助: 中央高校基本科研业务费深地岩体工程材料及其服役安全(FRF-BD-20-01B)
通讯作者:  juanhong1966@ hotmail.com   
作者简介:  李凯雯,北京科技大学土木与资源工程学院硕士研究生,主要研究领域为生态环保型高性能土木工程结构材料。
刘娟红,北京科技大学,教授。主要研究领域包括生态环保型高性能土木工程结构材料、新型 混凝土材料及其环境行为与建筑物寿命分析和矿山充填用新型胶凝材料研究与应用。
引用本文:    
李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
LI Kaiwen, LIU Juanhong, ZHANG Chao, DUAN Pinjia, ZHANG Bochao. Influence of Ultra-low Temperature and Low Temperature Cycles on Performance of Concrete Materials. Materials Reports, 2021, 35(z2): 183-187.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/183
1 Kim S, Kim M, Yoon H, et al.Cryogenics, 2018, 93, 75.
2 Kognara R B, Iyengar S R,Grasley Z C, et al. Construction and Building Materials, 2013, 47, 760.
3 Lee G C, Shih T S, Chang K C. Journal of Cold Regions Engineering, 1988, 2(4), 169.
4 Dahmani L.Strength of Materials, 2011, 43(5), 526.
5 We H D, Zhou M Z, Zhang Y C, et al.Engineers, 2010, 18, 22.
6 Krstulovic O N.Materials Journal, 2007, 104(3), 297.
7 杨海涛,段品佳,吴瑞东,等. 材料导报:研究篇, 2020, 34(16), 16043.
8 Masad N, Zollinger D, Kim S M, et al.Materials and Structures, 2016, 49(6), 2141.
9 魏强,谢剑,吴洪海. 工程力学, 2013, 30(S1), 125.
10 程宝军,王军,杨文,等. 混凝土, 2014(1), 101.
11 中华人民共和国建设部. 普通混凝土拌合物性能试验方法标准, 中国建筑工业出版社, 2003.
12 王术飞. 公路工程, 2019, 44(4), 279.
13 Corr D J, Lebourgeois J, Monteiro J M, et al.Cement and Concrete Research, 2002, 32(7), 1025.
14 Deboodt T, Wildenschhild D, Ideker J H, et al.Cement and Concrete Research, 2019, 116, 102.
15 Monteirop J, Rashed A, Bastacky J, et al. Cement and Concrete Research, 1989, 19 (2), 306.
16 Kim M J, Yoo D Y, Kim S, et al.Cement and Concrete Research, 2018, 107, 30.
17 谢剑,崔宁,姜晓峰. 硅酸盐通报, 2018, 37(8), 2367.
18 Cui Y H, Chen Y, Peng G.Construction and Building Materials, 2019, 211, 284.
19 Sanchez X R, Nonoa G, Vera G D, et al.Cement and Concrete Research, 2008, 38 (7), 1015.
20 Zhang M H, Islam J.Construction and Building Materials, 2012, 29, 573.
21 Liu J, Qu G F, Qiu Q, et al.Construction and Building Materials, 2017, 146, 493.
22 Selvaraj R, Muralidharan S, Srinivasan S.Struct Concrete, 2003, 4(1), 19.
23 Khalil K A.Materials Letters, 1996, 26(4), 259.
24 Xu Y, Chung D L.Cement and Concrete Research, 2000, 30(8), 1305.
25 Van B K.Cryogenics, 1982, 22(7), 331.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[3] 汪苏平, 汪源, 胡志豪, 潘阳, 胡传山, 李正平, 高慧敏, 文轩. 乳液聚合法制备降黏型聚羧酸减水剂[J]. 材料导报, 2021, 35(z2): 163-166.
[4] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[5] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[6] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[7] 韩向朝, 潘毅, 谢雨冬, 张旋, 郝哲昕, 钱春香. 无人机图像采集法对清水混凝土外观质量评价的研究[J]. 材料导报, 2021, 35(z2): 205-212.
[8] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[9] 唐占荣, 杨耀国, 叶海龙, 康海平. 高盐碱土壤对混凝土电杆腐蚀的影响分析[J]. 材料导报, 2021, 35(z2): 224-227.
[10] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[11] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[12] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[13] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[14] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[15] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed