Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 9-14    
  无机非金属及其复合材料 |
纳米二氧化硅负极材料储锂性能的研究进展
胡国彬, 刘慧根, 覃爱苗
桂林理工大学材料科学与工程学院,有色金属及材料加工新技术教育部重点实验室,桂林 541004
Research Progress in Lithium Storage Performance of Nano-silica Anode Materials
HU Guobin, LIU Huigen, QIN Aimiao
Key Laboratory of New Technology of Nonferrous Metals and Material Processing of Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
下载:  全 文 ( PDF ) ( 6651KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池作为新一代可充电电源,具有能量密度大、循环寿命长、维护需求低和无记忆效应等优点,是当前充电电池的主流发展方向。SiO2因其丰富的储量,成本低且易于合成,并具有较高的理论容量,被认为是有前景的锂离子电池负极材料。然而,固有的低电导率和锂化过程中的体积变化限制了SiO2基负极材料的广泛应用。本综述总结了SiO2基负极材料锂化机理的研究进展,以及提升电化学性能的最新研究策略,并对SiO2基负极材料的应用前景做了总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡国彬
刘慧根
覃爱苗
关键词:  锂离子电池  SiO2  负极材料  电化学  锂化机理    
Abstract: Lithium-ion batteries have advantages of high energy density, long cycle life, low maintenance requirements and no memory effect, and have become the mainstream development direction of current rechargeable batteries as a new generation of rechargeable power sources. SiO2 is considered to be a promising anode material for lithium-ion batteries due to its abundant reserves, low cost, easy synthesis, and high theoretical capacity. However, the inherent low conductivity and volume change during the lithiation process limit the wide application of SiO2-based anode materials. This review summarizes the research progress of the lithiation mechanism of SiO2-based anode materials, as well as the latest research strategies to improve electrochemical performance, recaps and prospects the application prospects of SiO2-based anode mate-rials.
Key words:  lithium battery    SiO2    anode materials    electrochemistry    lithiation mechanism
                    发布日期:  2021-07-16
ZTFLH:  TQ152  
基金资助: 广西自然科学基金(2018JJA160029;2018GXNSFAA138041);国家自然科学基金(51564009)
通讯作者:  2005032@glut.edu.cn   
作者简介:  胡国彬,2017年6月毕业于江西农业大学轻化工程专业,获得工学学士学位;现为桂林理工大学材料科学与工程学院硕士研究生,在覃爱苗教授的指导下进行研究工作。目前主要从事锂离子电池硅基负极材料、碳量子点荧光材料应用的研究。覃爱苗,理学博士,桂林理工大学教授,博士研究生导师。长期从事光电纳米功能材料,生物质炭储能材料与器件、量子点荧光探针及传感器等研究工作。在Adv. Mater., Inorg. Chem., Cryst. Growth Des., Scienti-fic Report,RSC Advances, Inorg. Chem. Commun.,Mater. Lett.,Solid State Commun.等期刊上发表论文100余篇,申请发明专利50多项,其中获得授权31项,1项获得成果转化。曾获省部级科技奖励3项。主持/参加了科研项目20多项,成功组织举办全国学术会议2次。
引用本文:    
胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
HU Guobin, LIU Huigen, QIN Aimiao. Research Progress in Lithium Storage Performance of Nano-silica Anode Materials. Materials Reports, 2021, 35(Z1): 9-14.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/9
1 Armand M,Tarascon J M. Nature,2008, 451(7179), 652.
2 Choi J W,Aurbach D. Nature Reviews Materials,2016, 1(4), 16013.
3 Pasta M,Wessells C D,Huggins R A, et al. Nature Communications,2012, 3, 1149.
4 Maier J. Nature Materials, 2005, 4 (11), 805.
5 Zaghib K,Simoneau M,Armand M, et al. Journal of Power Sources, 1999, 81, 300.
6 Kim H,Han B,Choo J, et al. Angewandte Chemie-International Edition, 2008, 47(52), 10151.
7 Magasinski A,Dixon P,Hertzberg B, et al. Nature Materials,2010, 9 (4), 353.
8 Liu J,Kopold P,van Aken P A, et al.Angewandte Chemie-International Edition,2015, 54 (33), 9632.
9 Chan C K,Peng H,Liu G, et al. Nature Nanotechnology, 2008, 3(1), 31.
10 Lee S W,McDowell M T,Choi J W, et al. Nano Letters, 2011, 11(7), 3034.
11 Wang C,Wu H,Chen Z, et al. Nature Chemistry, 2013, 5(12), 1042.
12 Lin D,Lu Z,Hsu P C, et al. Energy & Environmental Science, 2015, 8(8), 2371.
13 Yan N,Wang F,Zhong H, et al. Sci Rep-Uk, 2013, 3, 1568.
14 Favors Z,Wang W,Bay H H, et al. Sci Rep-Uk, 2014, 4, 4605.
15 Liu Z,Yu Q,Zhao Y, et al.Chemical Society Reviews, 2019, 48(1), 285.
16 Tang C,Liu Y,Xu C, et al. Advanced Functional Materials, 2018, 28(3), 1704561.
17 Gao B,Sinha S,Fleming L, et al. Advanced Materials, 2001, 13(11), 816.
18 Guo B,Shu J,Wang Z, et al. Electrochemistry Communications, 2008, 10(12), 1876.
19 Sun, Q,Zhang B,Fu Z W. Applied Surface Science,2008, 254(13), 3774.
20 Chang W S,Park C M,Kim J H, et al. Energy & Environmental Science, 2012, 5(5), 6895.
21 Zhang Y,Li Y,Wang Z, et al. Nano Letters, 2014, 14(12), 7161.
22 Sivonxay E,Aykol M,Persson K A. Electrochimica Acta, 2020, 331, 135344.
23 Abate I I,Jia C J,Moritz B, et al. Chemical Physics Letters, 2020, 739, 136933.
24 Mao J,Chen M,Deng Y, et al. Journal of Materials Science, 2019, 54(19), 12767.
25 Han Y Y,Liu X Y,Lu Z D. Applied Sciences-Basel, 2018, 8(8), 1245.
26 Li H H,Wu X L,Sun H Z, et al. Journal of Physical Chemistry C, 2015, 119 (7), 3495.
27 Yan N,Wang F,Zhong H, et al. Sci Rep-Uk, 2013, 3, 1568.
28 Ma X,Wei Z,Han H, et al. Chemical Engineering Journal, 2017, 323, 252.
29 Li W,Wang F,Ma M N, et al. RSC Advances, 2018, 8(59), 33652.
30 Wang K,Zhu X,Hu Y, et al. Carbon,2020, 167, 835.
31 Yang Y,Gao Y,Liu J, et al. Materials Sciences and Applications,2017, 8(13), 959.
32 Ali S,Jaffer S,Maitlo I, et al. Journal of Alloys and Compounds,2020, 812, 152127.
33 Meng J,Cao Y,Suo Y, et al. Electrochimica Acta,2015, 176, 1001.
34 Belgibayeva A,Taniguchi I. Electrochimica Acta,2019, 328, 135101.
35 Wang L,Zhu X,Tu K, et al. Electrochimica Acta,2020, 354, 136726.
36 Yao Y,Li Y,Li C, et al. ChemistrySelect,2020, 5(17), 5198.
37 Liu W,Yao T,Xie S, et al. Nanomaterials (Basel),2019, 9(1), 68.
38 Hou S,Liao M,Guo Y, et al. Applied Surface Science,2020, 530, 147223.
39 Han T,Ding Y,Chen Y, et al. Nanotechnology,2020, 31(3), 035401.
40 Tu J,Yuan Y,Zhan P, et al. Journal of Physical Chemistry C,2014, 118(14), 7357.
41 Tang J,Dai X,Wu F, et al. Ionics,2019, 26(2), 639.
42 Wang S,Zhao N,Shi C, et al. Applied Surface Science,2018, 433, 428.
43 Hao S,Wang Z,Chen L. Materials & Design,2016, 111, 616.
44 Mu G,Mu D,Wu B, et al.Small,2020, 16(3), 1905430.
45 Yao Y,Zhang J,Xue L, et al. J Power Sources,2011, 196(23), 102403.
46 Lepoivre F,Larcher D,Tarascon J M. Journal of The Electrochemical Society,2016, 163 (13), A2791.

[1] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[2] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[3] 刘刚, 贾莉斯, 陈颖, 汪嘉城, 莫松平. SiO2-H2O纳米悬浮液的导热及其机理分析[J]. 材料导报, 2021, 35(Z1): 116-120.
[4] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[5] 魏满想, 高思睿, 刘宏亮, 王鑫, 付海朋, 何立子. Sn对Al-Mg-Ga-Sn阳极合金电化学性能的影响[J]. 材料导报, 2021, 35(Z1): 311-314.
[6] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[7] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[8] 杨婷, 胡新宇, 王文磊. 硬脂酸锌热解ZnO@C复合材料的储锂性能[J]. 材料导报, 2021, 35(8): 8007-8010.
[9] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[10] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[11] 龚园军, 张军, 毛江鸿, 金伟良, 谭昱, 罗林. 电化学修复后不同含氢钢筋的低周疲劳性能试验研究[J]. 材料导报, 2021, 35(6): 6146-6150.
[12] 曹诗瑶, 闫小琴. GaAs材料在光电化学电池中的稳定性[J]. 材料导报, 2021, 35(5): 5062-5066.
[13] 任书芳, 冯润妍, 程寿年, 曾俊菱, 宫雪, 王庆涛. 二维材料MXenes在传感领域的应用研究进展[J]. 材料导报, 2021, 35(5): 5075-5088.
[14] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[15] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed