Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 62-70    
  无机非金属及其复合材料 |
电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展
张明伟1, 曲冠达1, 庞梦瑶1, 刘瑞1, 曹贯宇2, 李泽2, 陈子帅1, 刘景顺1
1 内蒙古工业大学材料科学与工程学院,呼和浩特 010051
2 哈尔滨工业大学材料科学与工程学院,哈尔滨 150001
Research Progress of Electromagnetic Shielding Mechanism and Coated/Structural Absorbing Composite Materials
ZHANG Mingwei1, QU Guanda1, PANG Mengyao1, LIU Rui1, CAO Guanyu2, LI Ze2, CHEN Zishuai1, LIU Jingshun1
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 5856KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电子产品和通讯技术快速发展造成的电磁污染日益严重,既危害人体健康和仪器仪表精度,又会造成信息泄露、失去安全保障等。因此,电磁屏蔽技术为直接有效的防控措施之一,通过衰减甚至完全消除电磁波来阻止电磁波的传递。电磁屏蔽机理包括电磁波反射和电磁波吸收两个方面,科学地设计制备出高性能的吸波复合材料已成为研究的热点问题之一。研究结果表明,电磁波衰减不仅需要吸波材料自身较好的电磁损耗性能,更需电磁波能够基于自由空间与基体材料间具有阻抗匹配特性,有效进入吸波材料内部,使电磁波能被吸波剂高效吸收。通常,按照制备工艺划分,吸波复合材料可分为涂敷型和结构型吸波复合材料两大类。前者是将吸波剂与涂料、粘合剂等充分混合后涂敷于元件表面作为吸波涂层,而后者则是以吸波剂作为功能载体,具有优良物理化学特性的材料作为基体,并与功能载体产生协同或增强作用的新型吸波复合材料。
本文通过对电磁屏蔽理论及吸波材料的本征特性进行系统的总结归纳,并基于相关理论基础对涂敷/结构型吸波复合材料进行简要综述,对比不同类型吸波材料的吸波性能,探讨涂敷/结构型吸波复合材料未来发展的制约因素及今后发展前景,为开发新型吸波复合材料提供理论支撑和研究思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张明伟
曲冠达
庞梦瑶
刘瑞
曹贯宇
李泽
陈子帅
刘景顺
关键词:  电磁屏蔽  吸波性能  反射损耗  涂敷型吸波材料  结构型吸波材料    
Abstract: The increasingly serious electromagnetic pollution was caused by the rapid development of electronic products and communication technology, which not only endangers human health and instrument precision, but also causes information leakage and loss of safety guarantee. Electromagnetic shielding technology is one of the direct and effective prevention and control method, which can prevent the transmission of electromagnetic waves by attenuated or even completely eliminate electromagnetic waves. The mechanism of electromagnetic shielding includes electromagnetic wave reflection and electromagnetic wave absorption. The scientific design and preparation of high-performance absorbing composite materials has become one of the hot issues in research. The results show that the electromagnetic wave attenuation not only requires an excellent electromagnetic loss performance of the absorbing material, but also requires the electromagnetic wave to be able to effectively enter into the absorbing material based on the impedance matching characteristics between the free space and the matrix material, so that the electromagnetic wave can be efficiently absorbed by the absorbing agent. Generally, according to the preparation process, absorbing composites can be divided into coated absorbing composites and structural absorbing composites. The former is fully mixed with absorbing agents, paints, adhesives, etc., and then coated on the surface of the components as absorbing coatings, while the latter is a new type of absorbing composites which uses absorbing agent as the functional carrier, materials with excellent physical and chemical properties as the matrix, and has synergistic or enhanced effect with the functional carrier.
This paper systematically summarizes the electromagnetic shielding theory and the intrinsic characteristics of the wave absorbing materials, and briefly reviews the coated/structural absorbing composite materials based on related theoretical basis, comparing the absorbing properties of different types of absorbing materials, discusses coating/structural absorbing composite materials for the future development of restricting factors and the future development prospect. It provides theoretical support and research ideas for the development of new wave absorbing composites.
Key words:  electromagnetic shielding    absorbing performance    reflection loss    coated absorbing materials    structural absorbing materials
                    发布日期:  2021-07-16
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51871124;52061035);内蒙古自治区“草原英才”项目(CYYC9025);内蒙古自治区自然科学基金杰出青年培育基金项目(2020JQ05);内蒙古工业大学材料学重点学科团队建设项目( ZD202012)
通讯作者:  ngdljsh@imut.edu.cn   
作者简介:  张明伟,2018年毕业于辽宁工业大学,获工学学士学位。现为内蒙古工业大学材料科学与工程学院材料科学与工程学科硕士研究生。目前主要从事电磁屏蔽及吸波功能复合材料的开发及应用研究工作。刘景顺,内蒙古工业大学材料科学与工程学院教授、博士研究生导师。2013年毕业于哈尔滨工业大学材料加工工程专业,获工学博士学位。教育部霍英东青年教师基金获得者,内蒙古自治区杰出青年基金获得者,内蒙古自治区“草原英才”。主要从事微尺度金属功能材料和电磁屏蔽及吸波复合功能材料的研究工作。近年来,在Advanced Enginee-ring Materials、Journal of Alloys and Compounds、Materials & Design、Journal of Magnetism and Magnetic Materials等国际期刊上发表SCI论文60余篇。
引用本文:    
张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
ZHANG Mingwei, QU Guanda, PANG Mengyao, LIU Rui, CAO Guanyu, LI Ze, CHEN Zishuai, LIU Jingshun. Research Progress of Electromagnetic Shielding Mechanism and Coated/Structural Absorbing Composite Materials. Materials Reports, 2021, 35(Z1): 62-70.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/62
1 Idris F M, Hashim M, Abbas Z, et al.Journal of Magnetism & Magnetic Materials, 2016, 405, 197.
2 Estevez D, Qin F X, Quan L, et al.Carbon, 2018, 132, 486.
3 Huang H D, Liu C Y, Zhou D, et al. Journal of Materials Chemistry A, 2015, 3(9), 4983.
4 Liang C B, Song P, Ma A J, et al. Composites Science and Technology, 2019, 181, 107683.
5 Zhou X F, Wang B B, Jia Z R, et al.Journal of Colloid and Interface Science, 2021, 582, 515.
6 Wang L, Shi X T, Zhang J L, et al. Journal of Materials Science& Technology, 2020, 52, 119.
7 刘顺华, 刘军民, 董星龙.电磁波屏蔽及吸波材料, 机械工业出版社, 2007.
8 Qin F X, Peng H X.Progress in Materials Science, 2013, 58(2), 183.
9 Griffiths D J. Introduction to electrodynamics, Cambridge University Press, UK, 2017.
10 Green M, Chen X B.Journal of Materiomics, 2019, 5(4), 503.
11 Chen S W, Tan G G, Gu X S, et al. Journal of Alloys and Compounds, 2017, 705, 309.
12 Zheng X F, Qin F X, Wang H, et al.Composites Science and Technology, 2017, 151, 62.
13 Yang Y, Xu C L, Xia Y X, et al.Journal of Alloys and Compounds, 2010, 493(1-2), 549.
14 Feng Y B, Tang C M, Qiu T, et al.Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2013, 178(16), 1005.
15 Dong Y P, Fan X M, Wei H J, et al. Ceramics International, 2020, 46(12), 20395.
16 Wang X D, Liu J S, Qin F X, et al.Transactions of Nonferrous Metals Society of China, 2014, 24(8), 2574.
17 Wang X H, Ni S B, Zhou G, et al. Materials Letters, 2010, 64(13), 1496.
18 Tao F J, Michael G, Tran A T V, et al.ACS Applied Nano Materials, 2019, 2(6), 3836.
19 Ding C, Cheng Y, Li X L, et al.Journal of Electronic Materials, 2018, 47(10), 5981.
20 Qi X S, Deng Y, Zhong W, et al.Journal of Physical Chemistry C, 2010, 114(2), 808.
21 Liu Y, Zhang Z Q, Xiao S T, et al.Applied Surface Science, 2011, 257(17), 7678.
22 Shu R W, Wu Y, Li W J, et al. Composites Science and Technology, 2020, 196, 108240.
23 Ning M Q, Lu M M, Li J B, et al.Nanoscale, 2015, 7(38), 15734.
24 Green M, Tian L H, Xiang P, et al.Materials Chemistry Frontiers, 2018, 2(6), 1119.
25 Green M, Tian L, Xiang P, et al. Materials Today Nano, 2018, 1, 1.
26 Wang M, Ji G B, Zhang B S, et al.Journal of Magnetism and Magnetic Materials, 2015, 377, 52.
27 Rehman S U, Liu J, Ahmed R, et al.Journal of Saudi Chemical Society, 2019, 23(4), 385.
28 Wei H J, Yin X W, Hou Z X, et al.Journal of the European Ceramic Society, 2018, 38(12), 4189.
29 Guo Y, Jian X, Zhang L, et al. Chemical Engineering Journal, 2020, 384, 123371.
30 Shao T Q, Ma H, Feng M D, et al. Journal of Alloys and Compounds, 2020, 818, 152851.
31 Liu X, Pan S K, Cheng L C, et al. Rare Metal Materials and Enginee-ring, 2015, 44(9), 2091.
32 Ghodake J S, Rahul C K, Shinde T J, et al.Journal of Magnetism and Magnetic Materials, 2016, 401, 938.
33 Yang H B, Ye T, Lin Y, et al.Journal of Alloys and Compounds, 2016, 683, 567.
34 Tammareddy H, Ramji K, NagaSree P S, et al.Materials Today-Procee-dings, 2019, 18, 420.
35 Yoo J E, Kang Y M. Journal of Magnetism and Magnetic Materials, 2020, 513, 167075.
36 Sun J, Wang L M, Yang Q, et al. Progress in Organic Coatings, 2020, 141, 105552.
37 Li Y M, Chen D D, Liu X Y, et al.Composites Science and Technology, 2014, 100, 212.
38 Jiao Y Z, Wu F, Xie A M, et al.Chemical Engineering Journal, 2020, 398, 125591.
39 Liu J S, Pang M Y, Cao G Y, et al. Journal of Materials Research and Technology, 2020, 9(6), 12907.
40 Liu J S, Qu G D, Wang X F, et al. Journal of Alloys and Compounds, 2020, 845, 156190.
41 Liu J S, Li Z, Jiang S D, et al. Journal of Alloys and Compounds, 2016, 683, 7.
42 He J H, Wang W, Wang A M, et al. Journal of Magnetism and Magnetic Materials, 2012, 324(18), 2902.
43 Duan Y P, Liu Y, Cui Y L, et al. Progress in Organic Coatings, 2018, 125, 89.
44 Chen W, Zheng X N, He X Y, et al.Polymer Testing, 2020, 86, 106448.
45 Jelmy E J, Lakshmanan M, Kothurkar N K. Materials Today-Proceedings, 2020, 26, 36.
46 Li W C, Xu L Y, Zhang X, et al.Composites Communications, 2020, 19, 182.
47 Luo H, Chen F, Wang F, et al. AIP Advances, 2018, 8(5), 056635.
48 Wang H Y, Zhu D M. Synthetic Metals, 2018, 246, 213.
49 Gao H, Luo F, Wen Q L, et al.Ceramics International, 2018, 44(6), 6010.
50 Shah A, Wang Y H, Huang H, et al.Composite Structures, 2015, 131, 1132.
51 Wei Y S, Yue J L, Tang X Z, et al.Applied Surface Science, 2018, 428, 296.
[1] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[2] 刘后宝, 傅仁利, 苏新清, 陈旭东, 吴彬勇. MXene材料的结构、性能及在电磁屏蔽领域的应用[J]. 材料导报, 2021, 35(13): 13067-13074.
[3] 米海娜, 于建芳, 王哲, 张涛, 郭继然, 王喜明. 具有保健功效木材的制备及其特性研究进展[J]. 材料导报, 2021, 35(11): 11215-11221.
[4] 曹敏, 邓雨希, 全鹏, 徐康, 杨喜, 李贤军. 木基多孔炭/铁氧体复合吸波材料的制备与性能表征[J]. 材料导报, 2021, 35(10): 10029-10035.
[5] 朱若星, 赵廷凯, 折胜飞, 李铁虎. 螺旋型非晶态碳纳米管/双马来酰亚胺树脂(HACNT/BMI)复合材料的制备及吸波机理[J]. 材料导报, 2021, 35(10): 10216-10220.
[6] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[7] 金丹, 王欢, 杜雨果. 磁控原位聚合铁硅铬/聚苯胺复合材料吸波性能研究[J]. 材料导报, 2020, 34(24): 24150-24154.
[8] 赵鹏飞, 耿浩然, 范浩军, 许伟建, 廖禄生, 彭政. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
[9] 周影影, 周万城, 叶梦元, 谢辉. 制备时间对CIPs/Fe3O4吸波性能的影响[J]. 材料导报, 2020, 34(10): 10008-10012.
[10] 张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
[11] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[12] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[13] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[14] 徐志超, 冯中学, 史庆南, 杨应湘, 王效琪, 起华荣. 定向凝固制备Mg98.5Zn0.5Y1合金中LPSO相的结构及其对合金电磁屏蔽性能的影响[J]. 材料导报, 2018, 32(6): 865-869.
[15] 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed