Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 71-77    
  无机非金属及其复合材料 |
富勒烯制备与提纯方法研究进展
王浩1,2, 宗楠1,3, 陈中正1, 薄勇1, 彭钦军1,3
1 中国科学院固体激光重点实验室,中国科学院理化技术研究所,北京 100190
2 中国科学院大学材料科学与光电技术学院,北京100049
3 中国科学院功能晶体与激光技术重点实验室 中国科学院理化技术研究所,北京 100190
Research Progress in Preparation and Purification of Fullerene
WANG Hao1,2, ZONG Nan1,3, CHENG Zhongzheng1, BO Yong1, PENG Qinjun1,3
1 Key Laboratory of Solid state laser, Chinese Academy of Sciences, Institute of Physical and Chemical Technology, Chinese Academy of Sciences, Beijing 100190, China
2 School of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3 Key Laboratory of Functional Crystal and Laser Technology, Chinese Academy of Sciences, Institute of Physical and Chemical Technology, Chinese Academy of Sciences, Beijing 100190, China
下载:  全 文 ( PDF ) ( 3371KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 富勒烯是由碳五元环和六元环相互排列组成的封闭中空分子的统称,是继石墨和金刚石之后人们发现的第三种碳的同素异形体。富勒烯具备独特的笼型结构以及特殊的物理化学性质,有着很高的应用研究价值,因此受到人们越来越多的关注,而其制备与分离技术是研究和应用的基础,本文综述了富勒烯的制备与提取分离方法,分析了影响富勒烯制备产率和效率的因素,比较了各种方法的优缺点,最后对富勒烯制备提纯技术提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王浩
宗楠
陈中正
薄勇
彭钦军
关键词:  富勒烯  C60  制备方法  提纯    
Abstract: Fullerene are hollow molecules arranged by carbon five-membered ring and six-membered ring, which are the third allotrope of carbon discovered after graphite and diamond. Due to their unique cage structure and special physical and chemical properties, fullerenes are of high application research value. In this paper, we review the preparation and separation methods of fullerenes, analyze the factors affecting the efficiency of different methods, and analyze the advantages and disadvantages of various methods. Finally, we propose the prospect of the preparation and purification technology of fullerenes.
Key words:  fullerene    C60    preparation method    purification
                    发布日期:  2021-07-16
ZTFLH:  TQ206  
基金资助: 国家自然科学基金项目 (51890864);中科院关键技术团队项目(GJJSTD20180004);中科院理化所所长基金(Y8A9021H11)
通讯作者:  zongnan@mail.ipc.ac.cn;chenzhongzheng@mail.ipc.ac.cn   
作者简介:  王浩,1997年生,本科毕业于北京交通大学,现为中科院理化技术研究所光学硕士研究生,研究方向为高功率全固态激光器。宗楠,光学博士,中科院理化所副研究员。1982年10月出生于辽宁。2005年毕业于北京交通大学,后保送至中国科学院物理研究所,2010年7月获理学博士学位。2010年7月至今工作于中国科学院理化技术研究所激光物理与技术研究中心。主要从事新型全固态激光(DPL)及变频技术研究,主持863 计划课题1项,国家自然基金青年项目1项,参与完成多项国家自然科学基金重大、973、 863、中科院创新等项目,获中科院及教育部鉴定成果2项,在Optics Letters, Optics Express, Laser Physics Letters等国际期刊发表SCI论文 40 余篇,授权发明专利 20 余项。陈中正,1987年生,本科毕业于清华大学,2015年于中国科学院理化技术研究所获光学博士学位,研究方向为固体激光技术,博士毕业后留中科院理化所激光中心工作,继续从事高功率固体激光的研究,2019年任研究员,先后主持和承担863、中科院等十余项课题与任务。在Photonics Technology Letters、Opt. Lett.、Opt. Express、Appl. Opt.等杂志发表十多篇论文,申请和授权发明专利十多项。
引用本文:    
王浩, 宗楠, 陈中正, 薄勇, 彭钦军. 富勒烯制备与提纯方法研究进展[J]. 材料导报, 2021, 35(Z1): 71-77.
WANG Hao, ZONG Nan, CHENG Zhongzheng, BO Yong, PENG Qinjun. Research Progress in Preparation and Purification of Fullerene. Materials Reports, 2021, 35(Z1): 71-77.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/71
1 Zhang Y, Yin Q Z.Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(48), 19579.
2 Pace N R.Proceedings of the National Academy of Sciences, 2001, 98(3), 805.
3 Kroto H W, Heath J R, Obrien S C, et al.Nature, 1985, 318(14), 162.
4 Nasir S, Hussein M Z, Zainal Z, et al. Materials, 2018, 11 (2), 295.
5 Green M A, Dunlop E D, Dean H L, et al. Progress in Photovoltaics: Research and Applications, 2019, 27(7), 565.
6 Mousavi S Z, Nafisi S, Maibach H I. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13(3), 1071.
7 Kanbur Y, Tayfun U. Journal of Elastomers and Plastics, 2019, 51(3), 262.
8 Pan Y, Liu X J, Zhang W, et al.Applied Catalysis B: Environmental, 2020, 265, 118579.
9 Capone M, Fabrizio M, Castellani C, et al. Reviews of Modern Physics, 2009, 81(2), 943.
10 Zhao Y F, Kim Y H, Dillon AC, Heben M J,Zhang S B. Physical review letters, 2005, 94(15), 155504.
11 Haufler R E, Chai Y, Chibante L P F, et al.MRS Proceedings, 1990, 206, 627.
12 Wakabayashi T,Kasuya D, Shiromaru H, et al. In: Conference Record of the 8th International Symposium on Small Particles and Inorganic Clusters (ISSPIC 8). Copenhagen, 1997, pp. 414.
13 Oyama T, Ishii T, Takeuchi K.Fullerene Science and Technology, Nanotubes, 1997, 5(5), 919.
14 Afanas'ev D V, Baranov G A ,Belyaev A A , et al.Technical Physics Letters, 2001, 27(5), 408.
15 Krätschmer W, Lamb l D, Fostiropoulos K, et al.Nature, 1990, 347(27), 354.
16 Dudnik A I, Osipova I V, Nikolaev N S, et al.Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28(9), 697.
17 Churilov G N, Krätschmer W, Osipova I V, et al.Carbon, 2013, 62, 389.
18 Churilov G, Popov A, Vnukova N, et al.Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24(11), 675.
19 Kareev I E, Nekrasov V M, Bubnov V P.Technical Physics, 2015, 60(1), 102.
20 Kareev I E, Dutlov E A, Bubnov V P. Technical Physics, 2020, 65(1), 102.
21 魏贤凤, 龙新平, 韩勇.含能材料, 2011,19(5), 597.
22 Yoshie K, Kasuya S, et al. Applied Physics Letters, 1992, 61(23), 2782.
23 Szépvölgyi J, Marković Z, Todorović-marković B,et al. Plasma Chemistry and PlasmaProcessing, 2006, 26(6), 597.
24 Fulcheri L, Fabry F, Rohani V.Carbon, 2012, 50(12), 4524.
25 Anctil A, Babbitt C W, Raffaelle R P, et al.Environmental Science and Technology, 2011, 45(6), 2353.
26 Kim K S, Kim T H. Journal of Applied Physics, 2019, 125(7), 070901.
27 Howard J B, Mckinnon J T, Makarovsky Y, et al.Nature, 1991, 352(11), 139.
28 Lee S M, Yoon S S, Chung S H, et al.Combustion and Flame, 2004, 136(4), 493.
29 王金刚, 彭汝芳, 朱根华, 等. 材料工程, 2008(10), 306.
30 Gerhardt P, Löffler S, Homann K H. Chemical Physics Letters, 1987, 137(4), 306.
31 付超勇. 低压苯/乙炔-氧气扩散火焰燃烧法合成富勒烯的放大实验研究.硕士学位论文. 厦门大学, 2018.
32 Qian H J, Adri C T, Morokuma K, et al.Journal of Chemical Theory and Computation, 2011, 7(7), 2040.
33 Takehara H, Fujiwara M, Arikawa M, et al.Carbon, 2005, 43(2), 311.
34 Grieco W J, Lafleur A L, Swallow K C, et al.Symposium (International) on Combustion, 1998, 27(2), 1669.
35 Alford J M, Bernal C, Cates M, et al.Carbon, 2008, 46(12), 1623.
36 Scott L T.Science, 2002, 295(22), 1500.
37 Otero G, Biddau G, Sanchez-Sanchez C, et al.Nature, 2008, 454(14), 865.
38 Scott L T.Angewandte Chemie-International Edition, 2004, 43(38), 4994.
39 Bezmel'nitsyn V N, Eletskii A V, Okun M V.Uspekhi Fizicheskih Nauk, 1998, 168(11),1195.
40 Churilov G N, Еlesina V I, Dudnik A I, et al.Fullerenes Nanotubes and Carbon Nanostructures, 2018, 27(3), 225.
41 Elesina V I, Churilov G N, Vnukova N G, et al. Fullerene Science and Technology, 2019, 27(10), 803.
42 Perez R A, Albero B, Miguel E, et al.Analytical Sciences, 2013, 29(5), 533.
43 Capp C, Wood T D, Marshall A G, et al.Journal of the American Chemical Society, 1994,116(11), 4987.
44 Place B J, Kleber M, Field J A, et al.Journal of Separation Science, 2013, 36(5), 953.
45 Kwok K S, Chan Y C, Ng K M, et al. Aiche Journal, 2010, 56(7), 1801.
46 Smalley R E,Haufler R E. U.S. Patent, US5227038A, 1993.
47 Yeretzian C, Wiley J B, Holczer K, et al.The Journal of Physical Chemistry, 1993, 97(39), 10097.
48 Moscalev G N, Grushko Y S, Sedov v P. RU.patent application, 2124473, 1999.
49 杨文宁, 彭汝芳, 王凯, 等.化工新型材料, 2010, 38(1), 5.
50 Hare J P, Kroto H W.Chemical Physics Letters, 1991, 177, 394.
51 Scrivens W A, Bedworth P V, Pour J M, et al.Journal of the American Chemical Society, 1992, 144(20), 7917.
52 Yi H , Zeng G, Lai C, et al.The Chemical Engineering Journal, 2017, 330, 134.
53 Komatsu N, Ohe T, Matsushige K,Carbon, 2004, 42(1), 163.
54 Komatsu N, Kadota N, Kimura T, et al.Fullerenes Nanotubes and Carbon Nanostructures, 2007, 15(4), 217.
55 Zhou X H, Liu J B, Jin Z X, et al. Fullerene Science and Technology, 2012, 5(1), 285.
56 Zhou X H, Gu Z N, Wu Y Q, et al.Carbon, 1994, 32(5), 935.
57 Doome R J, Fonseca A, Richter H, et al.Journal of Physics and Chemistry of Solids, 1997, 58(11), 1839.
58 Kishi N, Akita M, Yoshizawa M. Angewandte Chemie, 2014, 126(14), 3678.
59 García-simón C, Garcia-borràs M, Gómez, L, et al. Nature Communications, 2014, 5, 5557.
60 李培娟. 2018年中国富勒烯行业发展现状和市场前景分析:富勒烯纳米碳材料应用前景广阔. 2019-02-19.
61 郭静原. 我国首条吨级富勒烯生产线投产. 经济日报,2018-7-12.
[1] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[2] 马力, 赵赫, 昝宇宁, 肖伯律, 王东, 王全兆, 王文广. 耐热铝合金及其复合材料的制备、应用和强化机制[J]. 材料导报, 2021, 35(Z1): 414-420.
[3] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[4] 申冰磊, 王中跃, 于春雷, 王欣, 王世凯, 胡丽丽, 韦玮. 稀土掺杂钇铝石榴石晶体激光光纤的研究进展[J]. 材料导报, 2021, 35(9): 9123-9132.
[5] 陈小明, 伏利, 苏建灏, 刘伟, 李育洛, 毛鹏展, 张磊, 惠希东. AlON陶瓷的研究现状与发展趋势[J]. 材料导报, 2020, 34(Z2): 117-122.
[6] 王三胜, 王莹. 石墨提纯工艺研究进展综述和新技术展望[J]. 材料导报, 2020, 34(Z2): 147-151.
[7] 魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
[8] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[9] 王杰, 魏奎先, 马文会, 伍继君. 工业微硅粉应用及提纯研究进展[J]. 材料导报, 2020, 34(23): 23081-23087.
[10] 黄思睿, 伍昊, 朱和国. 共晶高熵合金的研究进展[J]. 材料导报, 2020, 34(17): 17077-17081.
[11] 张小艳, 孙元, 李慧, 陈振斌. 智能印迹聚合物研究进展及发展瓶颈[J]. 材料导报, 2020, 34(15): 15163-15173.
[12] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[13] 吴坤尧, 孟志新, 李兆, 丁旭, 张斌, 张俊彦. 低摩擦长寿命类富勒烯碳基薄膜的制备及其摩擦学特性[J]. 《材料导报》期刊社, 2018, 32(4): 559-562.
[14] 刘兰燕,宋俊,程博闻,薛文池,郑云波. 木质素基碳纤维制备的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 405-411.
[15] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed