Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23081-23087    https://doi.org/10.11896/cldb.19090058
  无机非金属及其复合材料 |
工业微硅粉应用及提纯研究进展
王杰1, 魏奎先1,2, 马文会1,2, 伍继君1,2
1 昆明理工大学冶金与能源工程学院,真空冶金国家工程实验室, 昆明 650093
2 昆明理工大学复杂有色金属资源清洁利用国家重点实验室, 昆明 650093
Research Progress in Purification and Application of Industrial Silica Fume
WANG Jie1, WEI Kuixian1,2, MA Wenhui1,2, WU Jijun1,2
1 National Engineering Laboratory for Vacuum Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 4448KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微硅粉作为冶炼工业硅或硅铁合金的烟尘副产品,其主要成分为无定形二氧化硅,同时存在少量游离碳及金属氧化物。由于其火山灰活性高、比表面积大等物理特性,可被广泛应用于混凝土、水泥、耐火材料等领域。与国外微硅粉相比,国内微硅粉无法同时满足纯度高及粒度小的要求,因此制约了其大规模的应用。然而,大量球形的二氧化硅颗粒在微硅粉的形成过程中被除尘装置所收集,这就为制备高纯球形二氧化硅提供了廉价易得的硅源。高纯球形二氧化硅是制备半导体集成电路与器件的关键材料之一,是国内粉体研究的热点。若将微硅粉加以提纯得到高纯球形二氧化硅,在一定程度上可改善我国对高纯球形二氧化硅依赖于进口的局面。
研究表明,提高微硅粉中SiO2的品位是提高其附加价值与经济效益的途径之一。通过高温煅烧达到碳的着火点,可有效去除微硅粉中游离的碳杂质。而利用微硅粉易与碱性介质反应,不溶于酸性溶液(氢氟酸除外)这两个特点,可去除微硅粉中的金属氧化物杂质。此外,利用选矿等手段也可对微硅粉中存在的杂质进行不同程度的去除,以达到提纯的效果。
本文概述了微硅粉在混凝土、水泥、耐火材料等领域的应用,总结了其作为添加剂的效果及作用机理,并分析了微硅粉的多种提纯方法,如煅烧法、湿法、絮凝法等,进而分析了各种提纯方法的优劣。结果表明,湿法提纯微硅粉技术可有效提高微硅粉纯度至99.98%以上,能够成为微硅粉提纯发展的主流方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王杰
魏奎先
马文会
伍继君
关键词:  工业微硅粉  提纯  高纯球形二氧化硅    
Abstract: Silica fume is a by-product produced in the metallurgical grade silicon (MG-Si) and ferrosilicon alloy production process. The main component is amorphous silica with small amount of free carbon and metal oxide impurities. Silica fume have been widely used in the field of concrete, cement and refractory materials due to its physical properties such as high volcanic ash activity and large specific surface area. However, silica fume is fail to utilize in large-scale application because its low-purity and large particle sizes, compared with foreign countries. Interestingly, sphe-rical silica particles, which collected in the dust removal device during the production of MG-Si, is a cheap and readily available source of silica for preparing the high purity spherical silica. High purity spherical silica is one of the key materials for semiconductor integrated circuit devices preparation, and it has been a focal point in powder material research field in China. If high purity spherical silica could be obtained from silica fume, it would greatly solve the problem of high purity spherical silica shortage in China.
Many published studies have been demonstrated that the grade of SiO2 in silica fume was improved, which is one of the approaches to increased value-added and economic benefits of silica fume. The free carbon in silica fume can be effectively removed by calcining at a high tempe-rature. Meanwhile, silica fume can easily react with alkaline medium, and metal oxide impurities also can be leached in acid solution (except hydrofluoric acid), which can effectively improve its purity. In addition, the purity of silica fume can be significantly achieved by other beneficiation methods.
This paper comprehensively elaborated the application fields of silica fume, including concrete, cement, refractory materials and etc. And then its additive effect and mechanism were summarized. Furthermore, the purification technology of silica fume were analyzed, such as calcination, acid, wet and flocculation. Based on the literature investigation, the results indicated that the purity of silica fume can be effectively improved with wet method, and above 99.98% of SiO2 can be obtained, which is the mainstream development direction of silica fume purification, and the development prospects of silica fume application fields are prospected.
Key words:  industrial silica fume    purification    high purity spherical SiO2
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TQ127.2  
基金资助: 云南省重大科技专项(2019ZE007);云南省创新人才计划(2018HB009);中国教育部创新研究团队(IRT-17R48)
通讯作者:  kxwei2008@hotmail.com   
作者简介:  王杰,2017年6月毕业于江西理工大学,获得工学学士学位。现为昆明理工大学冶金与能源工程学院硕士研究生,在魏奎先教授的指导下进行研究。目前主要研究领域为微硅粉的提纯工艺。
魏奎先,昆明理工大学冶金与能源工程学院教授、博士研究生导师、博士后合作导师。2017年入选云南省中青年学术和技术带头人后备人才。现任昆明理工大学学术委员会委员、中国有色金属学会青年工作委员会委员、中国金属学会铁合金分会委员、美国TMS会员。2018年中国有色金属学会青年科技奖,同年入选云南省万人计划人才。主要从事真空冶金、硅冶金与硅材料等方向的研究工作。
引用本文:    
王杰, 魏奎先, 马文会, 伍继君. 工业微硅粉应用及提纯研究进展[J]. 材料导报, 2020, 34(23): 23081-23087.
WANG Jie, WEI Kuixian, MA Wenhui, WU Jijun. Research Progress in Purification and Application of Industrial Silica Fume. Materials Reports, 2020, 34(23): 23081-23087.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090058  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23081
1 Wang Y. Preparation and application of amorphous silica from microsilica. Master’s Thesis, China University of Geosciences, China,2015(in Chinese).
王雨.利用硅微粉制备无定型二氧化硅及其应用研究.硕士学位论文,中国地质大学,2015.
2 Fan X. Study on the purification of industrial silicon powder. Master’s Thesis, Anhui University of Science and Technology, China,2014(in Chinese).
范旭.工业微硅粉提纯的研究.硕士学位论文,安徽理工大学,2014.
3 Papa E, Medri V, Kpogbemabou D, et al. Energy and Buildings,2016,131,223.
4 Ivanchik N, Kondratiev V, Chesnokova A. Procedia Engineering,2016,150,1567.
5 Takla M, Kamfjord N E, Tveit H, et al. Energy,2013,58,138.
6 Ding Z, Ma W H, Wei K X, et al. Chinese Journal of Vacuum Science and Technology,2012(2),185.
丁朝,马文会,魏奎先,等.真空科学与技术学报,2012(2),185.
7 Sadique S E. Production and purification of silicon by magnesiothermic reduction of silica fume. Master’s Thesis, School of Graduate Studies, University Putra, Malaysia,2011.
8 Chashin G A, Kashlev I M, Efimov G P, et al. Metallurgist,2009,53(3),234.
9 Polyakh O A, Rudneva V V, Yakushevich N F, et al. Steel in Translation,2014,44(8),565.
10 Zhang Y M, Qi H P, Li Y Q, et al. Korean Journal of Chemical Engineering,2017,34(12),3185.
11 Sun N, Li J H, Yang S L, et al. Inorganic Chemicals Industry,2017,49(8),5(in Chinese).
孙宁,李俊翰,杨绍利,等.无机盐工业,2017,49(8),5.
12 Mehta A, Ashish D K. Journal of Building Engineering, DOI:10.1016/j.jobe.2019.100888.
13 Pedro D, de Brito J, Evangelista L. Construction and Building Materials,2017,147,803.
14 Sun N, Li J H, Yang S L, et al. Henan Chemical Industry,2017,4(34),7(in Chinese).
孙宁,李俊翰,杨绍利,等.河南化工,2017,4(34),7.
15 Siddique R, Chahal N. Conservation and Recycling,2011,55(8),739.
16 Nour W M N, Mostafa A A, Ibrahim D M. Ceramics International,2008,34(1),101.
17 Bitar A, Ahmad N M, Fessi H, et al. Drug Discovery Today,2012,17(19),1147.
18 Rashad M M, Hessien M M, Abdel-Aal E A, et al. Powder Technology,2011,205(1),149.
19 Li Z C, Liu J D, Wang B P, et al. Industrial Heating,2007,36(4),48(in Chinese).
李志超,刘家鼎,王柏平,等.工业加热,2007,36(4),48.
20 Khan M I, Lynsdale C J, Waldron P. Cement & Concrete Research,2000,30(8),1225.
21 Jeong S G, Jeon J, Cha J, et al. Energy and Buildings,2013,62,190.
22 Abutalib N T. A Sustainable Industrial Waste Management Solution: Application of Silica Fume to Enhance Asphalt Binder Rheological Properties. Master’s Thesis, North Carolina Agricultural and Technical State University, U.S.2014.
23 Abutailb N, Fini H E, Aflaki S, et al. American Journal of Engineering and Applied Sciences,2015,8(1),176.
24 Okoye F N, Durgaprasad J, Singh N B. Ceramics International,2016,42(2),3000.
25 Benmammar M, Hacene S M E A B, Taleb O. Asian Journal of Civil Engineering,2019,20(4),581.
26 Karein S M M, Ramezanianpour A A, Ebadi T, et al. Construction and Building Materials,2017,157,573.
27 Kestutis B, Raoul J, Raimundas S. Agricultural Engineering Internatio-nal: CIGR Ejournal,2009,11,1682.
28 Darweesh H H M. Interceram-International Ceramic Review,2017,66(6),226.
29 Guo F, Sha J F, Xu H Y, et al. Concrete,2017(9),98(in Chinese).
郭飞,沙建芳,徐海源,等.混凝土,2017(9),98.
30 Nochaiya T, Jeenram T, Disuea P, et al. Monatshefte für Chemie,2017,148(7),1363.
31 Martinez A G T, Luz A P, Braulio M A L, et al. Ceramics International,2012,38(1),327.
32 He D Q. Shandong Ceramics,2013,36(1),26(in Chinese).
贺东强.山东陶瓷,2013,36(1),26.
33 Wang T, Tie S N, Wang C A. Materials Review B:Research Papers,2014,28(1),130(in Chinese).
王涛,铁生年,汪长安.材料导报:研究篇,2014,28(1),130.
34 Li Z H, Yu Q J, Chen X W, et al. Journal of Thermal Analysis and Calorimetry,2017,127(3),1897.
35 Wang Y H, Chen J Y, Lei X R, et al. Advanced Powder Technology,2018,29(5),1112.
36 He J L. Preparation of mesoporous silica microspheres by silica fume and adsorption properties for Pb2+. Master’s Thesis, Yunnan University, China,2015(in Chinese).
何佳丽.微硅粉制备介孔二氧化硅微球及其Pb2+吸附性能的研究.硕士学位论文,云南大学,2015.
37 Lei Z T, Chen X H, Zhu W J, et al. Materials Protection,2016(A1),184(in Chinese).
雷正涛,陈秀华,朱文杰,等.材料保护,2016(A1),184.
38 Ahmed S A, Gaber A A A, Rahim A M A. Applied Water Science,2017,7(2),677.
39 Goodarzi A R, Goodarzi S, Akbari H R. Iranian Journal of Science and Technology-Transactions of Civil Engineering,2015,39(C2),333.
40 Du Z Y, Wang J H, Wen S G, et al. Bulletin of the Chinese Ceramic So-ciety,2016,35(1),254(in Chinese).
杜中燕,王继虎,温绍国,等.硅酸盐通报,2016,35(1),254.
41 Butorina I V. Steel in Translation,2011,41(1),1.
42 Zemnukhova L A, Fedorishcheva G A, Shkorina E D, et al. Russian Journal of Applied Chemistry,2011,84(4),565.
43 Zhang Q Y, Wang W C, Jiang Z H. Science China Press,2016,61(13),1407(in Chinese).
张勤远,王伟超,姜中宏.科学通报,2016,61(13),1407.
44 Gu B, Ko D, Ahn S, et al. Journal of Sol-Gel Science and Technology,2017,82(3),675.
45 Wang X, Huang J, Dai S B, et al. Construction and Building Materials,2019,212,549.
46 Liu T, Cui C, Qi Y T, et al. New Chemical Materials,2011,39(5),105(in Chinese).
刘涛,崔璨,齐永涛,等.化工新型材料,2011,39(5),105.
47 Mao J, Xiang H K, Chen W Y. Journal of Wuhan Institute of Technology,2014(7),20(in Chinese).
毛静,向后奎,陈伟亚.武汉工程大学学报,2014(7),20.
48 Zhao S H, Tie S N. Bulletin of the Chinese Ceramic Society,2017,36(7),2243(in Chinese).
张韶红,铁生年.硅酸盐通报,2017,36(7),2243.
49 Jiang Z Y, Tie S N, Wang C A. Bulletin of the Chinese Ceramic Society,2013,32(1),19(in Chinese).
姜子炎,铁生年,汪长安.盐酸盐通报,2013,32(1),19.
50 Zhang S H, Tie S N. Journal of Synthetic Crystals,2017,46(2),323(in Chinese).
张韶红,铁生年.人工晶体学报,2017,46(2),323.
51 Barati M, Sarder S, Mclean A, et al. Journal of Non-Crystalline Solids,2011,357(1),18.
52 Liu Y, Liu L J, Li T L, et al. Non-Metallic Mines,2009(5),36(in Chinese).
刘瑜,刘丽娟,李铁龙,等.非金属矿,2009(5),36.
53 Yang Z W. Hydrometallurgical purification process for preparing spherical nano-silica by silica fume. Master’s Thesis, Kunming University of Science and Technology, China,2011(in Chinese).
杨振伟.微硅粉湿法提纯制备球形纳米二氧化硅.硕士学位论文,昆明理工大学,2011.
54 Sun N, Zhang P C, Qiu K H, et al. Materials Science Forum,2015,814,298.
55 Feng L Y, Lin R Y, Tian D C, et al. Chemical Industry and Engineering Progress,2015,34(12),4379(in Chinese).
冯柳毅,林荣毅,田登超,等.化工进展,2015,34(12),4379.
56 Tie S N, Jiang Z Y, Wang C A, et al. Journal of Synthetic Crystals,2013,42(10),2183(in Chinese).
铁生年,姜子炎,汪长安,等.人工晶体学报,2013,42(10),2183.
57 Pei X Y, Zhao P, Wang W H. Applied Chemical Industry,2008,37(2),129(in Chinese).
裴新意,赵鹏,王尉和.应用化工,2008,37(2),129.
58 Zhang J L, Guo Z C, Zhi X, et al. Chinese Journal of Process Enginee-ring,2012,12(2),212(in Chinese).
张金梁,郭占成,支歆,等.过程工程学报,2012,12(2),212.
59 Li X Y, Peng J R, He X C, et al. Hydrometallurgy of China,2014(5),406(in Chinese).
李小英,彭建蓉,和晓才,等.湿法冶金,2014(5),406.
60 He J L. Chen X H. Zhu W J. Materials Science Forum,2015,809,207.
61 Qi H P, Zhang Y M, Zhang Y F, et al. Chinese Journal of Environmental Engineering,2017,11(4),2475(in Chinese).
戚海平,张印民,张永峰,等.环境工程学报,2017,11(4),2475.
62 Ma L, Zhang X J, Liang K, et al. Journal of Panzhihua University,2015,32(5),4(in Chinese).
马兰,张晓娟,梁坤,等.攀枝花学院学报,2015,32(5),4.
63 Liu Y, Liu L J, Li Y C, et al. Journal of Safety and Environment,2009(5),95(in Chinese).
刘瑜,刘丽娟,李勇超,等.安全与环境学报,2009(5),95.
64 金朝晖,李铁龙,李勇超,等.中国专利,EP101823715,2010.
65 李铁龙,金朝晖,刘丽娟,等.中国专利,EP102211774,2011.
[1] 张冬,孙红娟,彭同江,刘波. 氧化-离心法提纯微晶石墨及其机理[J]. 《材料导报》期刊社, 2018, 32(12): 2051-2056.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed