Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 2051-2056    https://doi.org/10.11896/j.issn.1005-023X.2018.12.021
  材料研究 |
氧化-离心法提纯微晶石墨及其机理
张冬1,2,3,孙红娟1,2,3,彭同江2,3,刘波1,2,3
1 西南科技大学环境与资源学院,绵阳 621010;
2 西南科技大学固体废物处理与资源化教育部重点实验室,绵阳 621010;
3 西南科技大学矿物材料及应用研究所,绵阳 621010
Purification of Natural Microcrystalline Graphite by Oxidation Centrifugal Method and Its Mechanism
ZHANG Dong1,2,3,SUN Hongjuan1,2,3,PENG Tongjiang2,3,LIU Bo1,2,3
1 School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010;
2 Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010;
3 Institute of Mineral Materials and Application, Southwest University of Science and Technology, Mianyang 621010
下载:  全 文 ( PDF ) ( 3657KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以湖南郴州天然微晶石墨为原料,首次提出氧化-离心法提纯微晶石墨,采用改进Hummers法氧化微晶石墨,再对其进行离心处理,得到纯化的微晶氧化石墨(烯)。结果表明:微晶石墨经氧化处理后结构中键接上含氧官能团,层间域增大,微晶石墨集合体变得松散且集合体部分解理,粒度随着氧化程度的增加逐渐减小,经离心洗涤后可将杂质与微晶氧化石墨分离,从而获得纯度较高的微晶氧化石墨(烯)样品。通过对产物结构和成分的表征分析表明,氧化对微晶石墨集合体起到了化学解理作用,氧化程度越高,解理效果越明显。当微晶石墨与KMnO4质量比为1∶4时,可达到最佳提纯效果;提纯后微晶氧化石墨(烯的固定碳含量C)为98.8%,挥发分占0.2%,灰分仅占1%,集合体基本完全解理,片径尺寸为1~2 μm。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张冬
孙红娟
彭同江
刘波
关键词:  微晶石墨  氧化  离心  提纯    
Abstract: The centrifugal separation and purification of microcrystalline graphite was carried out by using modified Hummers method with Hunan Chenzhou natural microcrystalline graphite as raw material. The result revealed that the oxygen-containing functional groups are bonded to the structure, the interlayer space are increased, the microcrystalline graphite aggregates become loose and the aggregates are partially dissociated after oxidizing, the particle size decreases gradually with the increase of the oxidation degree. After washing, the impurity can be separated from the microcrystalline oxidized graphite, and the graphite with high purity is obtained. Through the analysis of the structure and composition of the product, it shows that the oxidation plays a key role in the purification process. The oxidation has a chemical dissociation effect on the aggregates. The higher the oxidation degree is, the more obvious the dissociation effect is. When the mass ratio of microcrystalline graphite to KMnO4 is 1∶4, the best purification effect can be achieved. After purification, fixed carbon is 98.8%, volatile content is 0.2%, the ash content is only 1%, and the aggregates are completely dissociated, the diameter of the slices was 1—2 μm.
Key words:  microcrystalline graphite    oxidation    centrifuge    purification
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TD925  
  O613.71  
基金资助: 国家自然科学基金(41272051;U1630132);四川省科技厅项目(2017GZ0114)
作者简介:  张冬:男,1991年生,硕士研究生,研究方向为微晶石墨提纯及其功能化改性 E-mail:422137016@qq.com 孙红娟:通信作者,女,1976年生,博士,教授,研究方向为层状矿物的晶体化学研究 E-mail:sunhongjuan@swust.edu.cn
引用本文:    
张冬,孙红娟,彭同江,刘波. 氧化-离心法提纯微晶石墨及其机理[J]. 《材料导报》期刊社, 2018, 32(12): 2051-2056.
ZHANG Dong,SUN Hongjuan,PENG Tongjiang,LIU Bo. Purification of Natural Microcrystalline Graphite by Oxidation Centrifugal Method and Its Mechanism. Materials Reports, 2018, 32(12): 2051-2056.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.021  或          http://www.mater-rep.com/CN/Y2018/V32/I12/2051
1 Feng Q M, Chen Y, Zhang G F, et al. Study on the purification of aphanitic graphite[J]. Conservation & Utilization of Mineral Resources,2003(3):20(in Chinese).
冯其明,陈云,张国范,等.隐晶质石墨提纯研究[J].矿产保护与利用,2003(3):20.
2 Zhang Q C, Liu J P, Xiao Q. Baking kinetics for silicic impurity in purification process of aphanitic graphite[J]. Journal of Central South University of Technology(Natural Science),2005,36(1):29(in Chinese).
张清岑,刘建平,肖奇.隐晶质石墨提纯工艺中硅的焙烧动力学研究[J].中南大学学报(自然科学版),2005,36(1):29.
3 Niu Xiaoxia, Li Xili, Zhao Jihong, et al. Preparation and coagulation efficiency of polyaluminium ferric silicate chloride composite coagulant from wastewater of high-purity graphite production[J].Journal of Environmental Science,2011,23(7):1122.
4 Kim B G, Sang K C, Chong L P, et al. Inclusion of gangue mineral and its mechanical separation from expanded graphite[J]. Particulate Science & Technology,2003,78(21):341.
5 Chelgani S C, Rudolph M, Kratzsch R, et al. A review of graphite beneficiation techniques[J]. Mineral Processing & Extractive Metallurgy Review,2015,1:58.
6 卢文光,王祖讷.一种选别隐晶质石墨的新方法[J].非金属矿,1994(1):17.
7 Ge Peng, Wang Huajun, Zhao Jing, et al. Preparation of high purity graphite by an alkaline roasting leaching method[J]. New Carbon Materials,2010(1):22(in Chinese).
葛鹏,王化军,赵晶,等.加碱焙烧浸出法制备高纯石墨[J].新型炭材料,2010(1):22.
8 Xie W, Wang Z, Kuang J, et al. Fixed carbon content and reaction mechanism of natural microcrystalline graphite purified by hydrochloric acid and sodium fluoride[J]. International Journal of Mineral Processing,2016,155:45.
9 Duan Jiaqi, Sun Hongjuan, Peng Tongjiang. Purifcation of microcrystalline graphite by ultrasonic treatment and mixed acid[J]. Non-Metallic Mines,2017(1):58(in Chinese).
段佳琪,孙红娟,彭同江.超声-混酸法提纯微晶石墨[J].非金属矿,2017(1):58.
10 夏云凯.氯化焙烧法提纯天然鳞片石墨工艺研究[J].非金属矿,1993(5):21.
11 Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano,2017,8(2):1086.
12 Liu H, Ryu S, Chen Z, et al. Photochemical reactivity of graphene[J]. Journal of the American Chemical Society,2017,131(47):17099.
13 Wang J, Huang J, Yan R, et al. Graphene microsheets from natural microcrystalline graphite minerals:Scalable synthesis and unusual energy storage[J].Journal of Materials Chemistry A,2015,3(6):3144.
14 Xian H, Peng T, Sun H, et al. Preparation of graphene nanosheets from microcrystalline graphite by low-temperature exfoliated method and their supercapacitive behavior[J]. Journal of Materials Science,2015,50(11):4025.
15 Gao Yang, Wu Dingwei, Yin Guangda, et al. A survey for biological applications of graphene oxide[J]. Materials Review A: Review Papers,2016,30(6):144(in Chinese).
高扬,吴丁威,殷广达,等.氧化石墨烯在生物医学领域的应用[J].材料导报:综述篇,2016,30(6):144.
16 Chen Hao, Peng Tongjiang, Liu Bo, et al. Research progress in gas sensors based on graphene oxide[J]. Materials Review A: Review Papers,2016,30(9):57(in Chinese).
陈浩,彭同江,刘波,等.氧化石墨烯在气体传感器中的应用研究进展[J].材料导报:综述篇,2016,30(9):57.
17 Deng Yao, Huang Xiaorong, Wu Xiaoling. Review on graphene oxide composites[J]. Materials Review A: Review Papers,2012,26(6):84(in Chinese).
邓尧,黄肖容,邬晓龄.氧化石墨烯复合材料的研究进展[J].材料导报:综述篇,2012,26(6):84.
18 Xian Haiyang, Peng Tongjiang, Sun Hongjuan. Structural properties change comparison between amorphous and crystalline flake graphite in the oxidation process[J]. Non-Metallic Mines,2014(5):18(in Chinese).
鲜海洋,彭同江,孙红娟.土状与鳞片状石墨氧化过程中结构变化研究[J].非金属矿,2014(5):18.
19 Nanda S S, Papaefthymiou G C, Yi D K. Functionalization of graphene oxide and its biomedical applications[J]. Critical Reviews in Solid State and Materials Sciences,2015,40(5):291.
20 Bao H, Pan Y, Ping Y, et al. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery[J]. Small,2011,7(11):1569.
21 Rana V K, Choi M C, Kong J Y, et al. Synthesis and drug-delivery behavior of chitosan-functionalized graphene oxide hybrid nanosheets[J].Macromolecular Materials and Engineering,2011,296(2):131.
22 Sahoo N G,Bao H, Pan Y, et al. Functionalized carbon nanomate-rials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study[J]. Chemical Communications,2011,47(18):5235.
23 Zhang L, Xia J, Zhao Q, et al. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs[J]. Small,2010,6(4):537.
24 Weaver C L, LaRosa J M, Luo X, et al. Electrically controlled drug delivery from graphene oxide nanocomposite films[J]. ACS Nano,2014,8(2):1834.
25 Li P, Zhen X, Zheng L, et al. An iron-based green approach to 1-h production of single-layer graphene oxide[J]. Nature Communications,2011,6:5716.
26 Xian H, Peng T, Sun H, et al. The effect of thermal exfoliation temperature on the structure and supercapacitive performance of graphene nanosheets[J]. Nano-Micro Letters,2015,7(1):17.
27 Zhou Kaihong, Yu Wei, Ding Xingbiao. Preliminary study on the flotation of aphanitic graphite[J]. Mining Research and Development,2012(4):58(in Chinese).
周开洪,于伟,丁行标.隐晶质石墨浮选初步研究[J].矿业研究与开发,2012(4):58.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[3] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[4] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[5] 彭寿, 赵凤阳, 曹欣, 单传丽. 澄清剂氧化锡对TFT-LCD基板玻璃澄清效果的影响[J]. 材料导报, 2019, 33(z1): 195-198.
[6] 孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料导报, 2019, 33(z1): 373-376.
[7] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[8] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[9] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[10] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[11] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[12] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[15] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed