Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 29-32    
  无机非金属及其复合材料 |
固体氧化物燃料电池用CeO2基电解质的研究进展
刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文
内蒙古科技大学材料与冶金学院,包头 014010
Research Progress of CeO2-based Electrolytes for Solid Oxide Fuel Cells
LIU Runze, ZHOU Fen, WANG Qingchun, GAO Jianquan, BAO Jinxiao, SONG Xiwen
School of Materialsand Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
下载:  全 文 ( PDF ) ( 2189KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种高效的能源转换装置,固体氧化物燃料电池(SOFC)因具有高效率、环境友好和燃料灵活等优点受到广泛关注。电解质作为SOFC的核心部分,其性能的好坏直接决定SOFC的性能。SOFC使用的传统电解质材料是部分氧化钇稳定的氧化锆(YSZ),但因其工作温度高(约1 000 ℃),由此带来电极材料的选择、密封等诸多困难。因此,开发适用于中低温下的电解质对推进SOFC的商业化进程至关重要。
单元素掺杂的氧化铈基电解质在中低温下的电导率高于同温度下YSZ的电导率。然而,CeO2基电解质也存在以下不足:在低氧分压下,部分Ce4+被还原为Ce3+而产生电子电导;在中低温度下,晶界电阻较大而使总电导率降低。影响CeO2基电解质电导率的因素较多,如粉体的制备方法、烧结体的微观形貌、掺杂剂的种类和浓度。其中,较为重要的影响因素是掺杂剂的种类及其浓度、粉体的制备方法。
针对以上问题,研究人员普遍认为,相比于单掺杂CeO2,元素共掺或多掺(尤其掺杂稀土元素)更有利于改善电解质的离子电导率,并降低电子电导率。掺杂元素的种类通常包括:稀土元素和部分碱土金属元素。除元素掺杂外,不同碳酸盐复合的CeO2基电解质也引起了研究人员的兴趣。在制备方法上,采用微波烧结、多元醇法、静电纺丝等不同粉体制备方法可得到高离子电导率的电解质,此外,将电解质薄膜化或采用脉冲激光沉积(PLD)在CeO2电解质基底上沉积一层隔膜都可以降低电子电导,提高电导率。
本文结合最近几年学者们对CeO2基电解质的研究状况,简述了元素掺杂、粉体的制备方法以及电解质薄膜对CeO2基电解质电性能的影响,并对其发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘润泽
周芬
王青春
郜建全
包金小
宋希文
关键词:  固体氧化物燃料电池  掺杂CeO2  元素掺杂  粉体制备方法  离子电导率    
Abstract: As a high-efficiency energy conversion device, solid oxide fuel cell (SOFC) has attracted widely attention due to its high efficiency, environmental friendliness and fuel flexibility. As the critical part of SOFC, the performance of electrolyte directly determines the performance of SOFC. The electrolyte material commonly used in SOFC is partially yttria-stabilized zirconia (YSZ), but due to its high operating temperature (about 1 000 ℃), it brings difficulties in electrode material selection, sealing and so on. Therefore, the development of electrolytes suitable for low and intermediate temperature is essential to promote the commercialization of SOFC.
The conductivity of single element-doped ceria electrolyte is higher than that of YSZ at low and intermediate temperatures. However, the disadvantages of CeO2-based electrolytes are that they exhibit electronic conduction due to reduction of Ce4+ to Ce3+ at lower oxygen partial pressures environments as well as the decrease of total conductivity due to the high grain boundary resistance at low and medium temperatures. Many factors affect the conductivity of CeO2-based electrolytes, such as the preparation method of the powder, the microscopic morphology of the sintered body, and the type and concentration of dopants. Among them, the more important factors are the type of doping elements and its concentration, the preparation method of the powder.
Inview of the above problems, researchers generally believe that co-doped or multi-doped (especially doping with rare earth elements) ceria which compared with single element-doping is more beneficial to improve the ionic conductivity of CeO2-based electrolytes and inhibit electronic conductivity. In addition to element doping, ceria-based electrolytes composited with different carbonates have also attracted the interest of researchers. In terms of preparation methods, different powder preparation methods such as microwave sintering, polyols method, and electrostatic spinning can also be used to obtain electrolytes with high ionic conductivity. In addition, thinning the electrolyte to a film and depositing a layer membrane on the CeO2-based electrolyte substrate by pulsed laser deposition (PLD) can reduce electronic conductivity and improve conductivity.
In this paper, based on the research status of CeO2-based electrolyte in recent years, the influence of element doping, the preparation method of powder and electrolyte film on the electrical properties of CeO2-based electrolyte is briefly described, and its development is prospected.
Key words:  solid oxide fuel cell    doped CeO2    element doping    powder preparation method    ion conductivity
                    发布日期:  2021-07-16
ZTFLH:  TM285  
通讯作者:  zhoufen73@163.com   
作者简介:  刘润泽,现为内蒙古科技大学材料与冶金学院在读研究生,在周芬副教授的指导下进行研究。目前主要研究稀土掺杂CeO2电解质的制备及性能研究。周芬,内蒙古科技大学材料与冶金学院副教授,硕士研究生导师。1997年毕业于包头钢铁学院,2006年毕业于内蒙古科技大学,获工学硕士学位。主要从事氧离子导体、混合导体及其器件的研究工作。近年来,在Ceramics International、《硅酸盐学报》等国内外学术期刊上发表相关的学术论文10余篇。
引用本文:    
刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
LIU Runze, ZHOU Fen, WANG Qingchun, GAO Jianquan, BAO Jinxiao, SONG Xiwen. Research Progress of CeO2-based Electrolytes for Solid Oxide Fuel Cells. Materials Reports, 2021, 35(Z1): 29-32.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/29
1 韩达, 吴天植, 辛显双. 中国工程科学, 2013, 15(2), 66.
2 Shirbhate S, Nayyar R N, Ojha P K, et al.Journal of the Electrochem Society, 2019, 166 (8), 544.
3 Anirban S, Das P T, Dutta A. Ceramics International, 2019, 45, 5751.
4 Sun Q, Fu Z M, Yang Z X. Ceramics International, 2018, 44, 3707.
5 石倩, 郑峰, 陈宇. 稀有金属与硬质合金, 2007, 35(3), 1.
6 Mogensen M, Sammes N M.Solid State Ionics, 2000, 129, 63.
7 Thangadurai V, Weppner W.Electrochimica Acta, 2004, 49, 1577.
8 Anwar M, Muhammed S A, Baharuddin N A, et al. Ceramics Internatio-nal, 2018, 44, 13639.
9 Rushton M J D, Chroneos A, Skinner S J, et al. Solid State Ionics, 2013, 230, 37.
10 Ahn K, Chung Y C, Yoon K J, et al. Journal of Electroceramics. 2014, 32 (1), 72.
11 Wang X W, Chen J G, Tian Y W, et al. Solid State Ionics, 2016, 296, 85.
12 Wang F Y, Chen S, Cheng S. Electrochemistry Communications, 2004, 6(8), 743.
13 Herle J V, Seneviratne D, Mcevoy A J. Journal of the European Ceramic Society, 1999, 19(6-7), 837.
14 Guan X, Zhou H, Liu Z, et al. Materials Research Bulletin, 2008, 43(4), 1046.
15 Venkataramana K, Madhusudan C, et al. Ceramics International, 2018 (44), 6300.
16 Khagesh Tanwar, Nandini Jaiswal, Devendra Kumar, et al. Journal of Alloys and Compounds, 2016,684, 683.
17 Xie S, Liu Y, Xi W, et al. Materials Research Innovations, 2017, 21 (2), 69.
18 Zheng Y, Gu H, Chen H, et al.Materials Research Bulletin, 2009, 44 (4), 775.
19 Nicollet C, Kalaev D, Tuller H L, et al. Solid State Ionics, 2019, 331, 96.
20 Kobi S, Jaiswal N, Kumar D, et al. Journal of Alloys and Compounds, 2016, 658, 513.
21 Steele B C H.Solid State Ionics, 2000, 129, 95.
22 Moure A, Tartaj J, Moure C.Materials Letters, 2011, 65, 89.
23 Ramesh S, Raju K C J, Reddy C V.Transactions Nonferrous Metals Society of China, 2014, 24, 393.
24 Cioateră N, Pârvulescu V, Rolle A, et al.Solid State Ionics, 2009, 180, 681.
25 Zheng Y, He S, Ge L, et al.Journal of Hydro Energy, 2011, 36, 5128.
26 Ge L, Li R, He S, et al.Journal of Power Sources, 2013, 230, 161.
27 Sudarsan P, Krishnamoorthy S B. Materials Research Bulletin, 2018,100, 446.
28 Venkataramana K, Madhuri C, Shanker J, et al.Ionics, 2018, 10, 3075.
29 Liu Y, Fan L, Cai Y, et al.ACS Applied Materials Interfaces, 2017, 9 (28), 23614.
30 Muhammad K U, Rizwan R, Asghar M I.Journal of Alloys and Compounds,2019,773,550.
31 Venkataramana K, Reddy Y S, et al. Journal of Alloys and Compounds, 2017, 719, 97.
32 Tariq S, Marium A, Raza R, et al. Results in Physics, 2018, 8, 780.
33 高红杰. 三掺杂氧化铈基固体氧化物电解质离子电导性能. 硕士学位论文, 大连理工大学, 2011.
34 Burbano M, Nadin S, Marrocchelli D, et al. The Journal of Chemical Physics, 2014,16, 8320.
35 Kumar S A, Kuppusami P, Amirthapandian S,et al. International Journal of Hydrogen Energy, 2020, 45, 29690.
36 Andersson D A, ISimak S, Skorodumova N V, et al. Proceedings of the National Academy of Sciences of the United States Of America,2006, 103, 3518.
37 Shirbhate S, Yadav A K, Acharya S. Solid State Ionics, 2020, 345, 115157.
38 Shawuti S, Gulgun M A. Journal of Power Sources, 2014, 267, 128.
39 Joao P, Grilo F, Daniel A, et al. Electrochimica Acta, 2019, 318, 977.
40 Singh M, Singh A K.Ceramics International, 2020, 8, 241.
41 Muhammad K U, Naveed A, Salah U D, et al. International Journal of Hydrogen Energy, 2019, 44, 10964.
42 Sındırac C, Çakırlar S, Büyükaksoy A, et al. Journal of the European Ceramic Society, 2019, 39, 409.
43 Liang J P. Electrochimica Acta, 2015, 178, 321.
44 Arabaci A, Altınçekiç T G, Der M, et al. Journal of Alloys and Compounds, 2019, 792, 1141.
45 Aygün B, Ozdemir H, Oksüzomer M A F. Materials Chemistry and Phy-sics, 2019, 232, 82.
46 Spiridigliozzia L, Dell'Aglia G, Accardoc G, et al. Ceramics Internatio-nal, 2019, 45, 4570.
47 Kim C, Kima S, Jang I. Journal of Power Sources, 2019, 415, 112.
48 Cheng J, Bao W, Han C, et al.Journal of Power Sources, 2010, 195, 1849.
49 Tanhaei M, Mozammel M.Ceramics International, 2017, 43(3), 3042.
50 Zheng R,Nie H W, Chen W X. Journal of the Chinese Ceramic Society, 2013, 31(6), 598.
51 Tomita A, Teranishi S, Nagao M, et al.Journal of the Electrochemical Society, 2006, 153(6), A956.
52 Besra L, Compson C, Liu M.Journal of Power Sources, 2007, 173(1), 130.
53 Takeyama T, Takahashi N, Nakamura T, et al. Surface and Coatings Technology, 2006, 200(16-17), 4797.
54 Yang D, Zhang X, Nikumb S, et al.Journal of Power Sources, 2007, 164(1), 182.
55 Chen Y, Wei W. Solid State Ionics, 2006, 177(3-4), 351.
56 Ding C S, Lin H F, Kazuhisa S, et al.Journal of Power Sources, 2010, 195(9), 5487.
[1] 王瑞, 赵宣, 赵丽娟, 闫静, 田晓, 姚占全. 微量稀土元素掺杂引起Fe-Ga合金大磁致伸缩性能的研究进展[J]. 材料导报, 2020, 34(7): 7146-7153.
[2] 林佩俭, 苗鹤, 王洲航, 陈斌, 武旭扬, 袁金良. 固体氧化物燃料电池(SOFC)钛基钙钛矿阳极的研究进展[J]. 材料导报, 2020, 34(5): 5032-5038.
[3] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[4] 张英杰,吴昊,曾晓苑,李雪,董鹏,肖杰. 直接碳固体氧化物燃料电池阳极材料的研究进展[J]. 材料导报, 2020, 34(3): 3090-3098.
[5] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[6] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[7] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[8] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[9] 吴晓燕, 谭维, 罗才武, 张晓文, 李密, 房琦, 谭文发. 以MnFe2O4为阻挡层的Ni-YSZ阳极支撑SOFC的效能[J]. 材料导报, 2019, 33(12): 1949-1954.
[10] 陈雷行, 苏金瑞, 何豪, 张宗镇, 蔡彬. 质子导体固体氧化物燃料电池的PrBa0.5Sr0.5Cu2O6-δ复合阴极材料[J]. 材料导报, 2019, 33(10): 1615-1618.
[11] 周嵬, 王习习, 朱印龙, 戴洁, 朱艳萍, 邵宗平. 面向金属-空气电池和中低温固体氧化物燃料电池应用的钴基电催化剂综述[J]. 材料导报, 2018, 32(3): 337-356.
[12] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[13] 王松林, 徐向棋, 陈子潘, 孟广耀. 掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料[J]. 材料导报, 2018, 32(16): 2728-2732.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed