Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 143-150    
  无机非金属及其复合材料 |
磷酸基功能化二氧化硅材料的制备、性能和应用
吕博, 陈连喜
武汉理工大学化学化工与生命科学学院,武汉 430070
Preparation, Performance and Application of Phosphate-based Functionalized Silica Material
LYU Bo, CHEN Lianxi
School of Chemistry, Chemical Engineering and Life Sciences,Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 3503KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近些年来,二氧化硅材料因低密度、低毒性、良好的生物相容性、优良的化学与热稳定性以及优异的形貌与结构的可控性而具有巨大的应用价值。对其进行改性,引入有机功能基,从而制备功能化二氧化硅材料有助于进一步提高其性能并扩展其应用范围。因优异的性能与潜在的应用价值功能化二氧化硅材料引起了众多研究者们的关注,而磷酸基功能化二氧化硅材料是其中的一个研究热点。
本文归纳了磷酸基功能化二氧化硅材料的研究进展,对其制备及应用作了相关介绍。磷酸基功能化二氧化硅的制备方法主要包括磷酸硅烷偶联法和后磷酸化法。在磷酸硅烷偶联法中,基于磷酸硅烷的引入,分为后嫁接法与共缩聚法,其中后嫁接法主要是采用磷酸硅烷对二氧化硅材料进行改性,在材料表面形成硅氧硅键以引入磷酸基团;共缩聚法主要是磷酸硅烷与其他硅烷共同水解缩合,形成硅氧硅网络以引入磷酸基团。后磷酸化法中,基于反应中所形成的化学键,主要分为硅氧磷键法、碳磷键法、碳氧磷键法,其中硅氧磷键法是通过磷酸或磷酸衍生物对二氧化硅材料表面的硅羟基进行改性,通过形成硅氧磷键引入磷酸基团。碳磷键法主要是对功能化的二氧化硅进行Arbuzov反应或Mannich反应形成碳磷键以引入磷酸基团。碳氧磷键法主要是磷化试剂对环氧基功能化的二氧化硅进行改性,通过环氧开环反应,以形成碳氧磷键的方式引入磷酸基团。凭借磷酸基团优异的络合能力、充足的酸性位点、优异的质子自脱离能力、良好的生物活性以及二氧化硅本身优异的性能,磷酸基功能化二氧化硅材料在吸附、催化、电导、生物医学等方面具有优异的性能与广阔的应用价值。最后本文对磷酸基功能化二氧化硅材料未来的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕博
陈连喜
关键词:  磷酸基  功能化  二氧化硅    
Abstract: In recent years, silica materials have great application value due to their low density, low toxicity, good biocompatibility, excellent chemical and thermal stability, and excellent morphology and structure controllability. Modifying it and introducing organic functional groups to prepare functionalized silica materials will help to further improve its performance and expand its scope of application. Because of its excellent performance and potential application value, functionalized silica materials have attracted the attention of many researchers, and phosphate-based functiona-lized silica materials are one of the research hotspots.
This article summarizes the research progress of phosphate-based functionalized silica materials, and introduces its preparation and application. The preparation method mainly includes phosphoric acid silane coupling method and post phosphorylation method. In phosphoric acid silane coupling method, based on the introduction of phosphoric silane, it is divided into post grafting method and copolycondensation method.The post grafting method is mainly through phosphoric silane to two modification of silicon oxide materials, forming Si-O-Si bonds on the surface of the material to introduce phosphoric acid groups. The copolycondensation method is mainly to hydrolyze and condense phosphoric silane and other silanes to form a silicon-oxygen silicon network to introduce phosphoric acid groups: post-phosphorylation based on the chemical bonds formed in the reaction, it is mainly divided into Si-O-P bonding method, C-P bonding method, and C-O-P bonding method. Among them, the Si-O-P bon-ding method uses phosphoric acid or phosphoric acid derivatives to affect silicon on the surface of silica materials. Hydroxyl modification introduces phosphoric acid groups by forming siloxyphosphorus bonds. The C-P bond method is mainly to perform Arbuzov reaction or Mannich reaction on functionalized silica to form C-P bond to introduce phosphoric acid groups. The C-O-P bond method mainly involves the modification of epoxy-functionalized silica with phosphating reagents, and the introduction of phosphoric acid groups in the form of C-O-P bonds through epoxy ring opening reaction. With the excellent complexing ability of phosphoric acid groups, sufficient acidic sites, excellent proton self-detachment ability, good biological activity and excellent performance of silica itself, phosphoric acid-based functionalized silica materials have excellent performance and broad application value in adsorption, catalysis, electrical conductivity and biomedicine. Finally, we looke forward to the future development of phosphate-based functionalized silica materials.
Key words:  phosphate-based    functional    silica
                    发布日期:  2021-07-16
ZTFLH:  TB332  
通讯作者:  clx@whut.edu.cn   
作者简介:  吕博,2018年6月毕业于济南大学,获得理学学士学位。现为武汉理工大学化学化工与生命科学学院研究生,在陈连喜副教授的指导下进行研究。目前主要研究领域为有机无机杂化材料。陈连喜,武汉理工大学化学化工与生命科学学院副教授、硕士研究生导师。1985年7月本科毕业于武汉大学化学系,1988年硕士毕业于武汉大学化学系,1988年至今年分别在湖北省化学研究所、香港中文大学、武汉理工大学生物材料与工程研究中心和武汉理工大学化学系工作。从事化学和化工研究近三十年,具有丰富的理论和应用研究经验。先后从事农用化学品、天然产物和药物、功能高分子材料及有机无机杂化材料等研究。与广东省企业有多年合作关系,先后两次担任广东省科技特派员。主持和参加包括国家科技攻关项目、国家自然科学基金、省部级科技项目、军工项目等多项科研项目,发表文章六十多篇,其中二十余篇被SCI、EI收录,获湖北省科技进步三等奖一次,近十项专利获授权。
引用本文:    
吕博, 陈连喜. 磷酸基功能化二氧化硅材料的制备、性能和应用[J]. 材料导报, 2021, 35(Z1): 143-150.
LYU Bo, CHEN Lianxi. Preparation, Performance and Application of Phosphate-based Functionalized Silica Material. Materials Reports, 2021, 35(Z1): 143-150.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/143
1 Han L, Ruan J, Li Y S, et al.Chemistry of Materials, 2007, 19, 2860.
2 Wang X, Wang P, Jiang Y, et al. Composites Science and Technology, 2014, 104,1.
3 Xu W, Gao Q, Xu Y, et al. Journal of Solid State Chemistry, 2008, 181, 2837.
4 Yang Y, Liu J, Li X B, et al.Chemistry of Materials, 2011, 23, 3676.
5 Zhu Y F, Fang Y, Borchardt L, et al. Microporous and Mesoporous Materials, 2011, 141, 199.
6 Shen Q H, Liu M, Yu D D, et al. Journal of the Chinese Chemical Society, 2018, 65, 591.
7 Antochshuk V, Olkhovyk O, Jaroniec M, et al.Langmuir, 2003, 19, 3031.
8 Teng M M, Wang H T, Li F T, et al. Journal of Colloid and Interface Science, 2011, 355, 23.
9 Heidari A, Younesi H, Mehraban Z. Chemical Engineering Journal, 2009, 153, 70.
10 Benitez M, Das D, Ferreira R, et al. Chemistry of Materials, 2006, 18, 5597.
11 Bala T, Prasad B L, Sastry M, et al. Journal of Physical Chemistry A, 2007, 111, 6183.
12 Xu G, Zhao Y L, Hou L P, et al. Chemical Engineering Journal, 2017, 325, 533.
13 Illy N, Fache M, Menard R, et al. Polymer Chemistry, 2015, 6,6257.
14 韩帅元, 岳宝华, 严六明. 物理化学学报, 2014, 30 (1), 8.
15 Dai Q G, Zhang Z Y, Yan J R, et al. Journal of Environmental Science and Technology, 2018, 52, 13430.
16 Ravi S, Lee Y R, Yu K, et al. Microporous and Mesoporous Materials, 2018, 258, 62.
17 Weinberger C, Heckel T, Schnippering P, et al. Nanomaterials, 2019, 9, 249.
18 He G W, Nie L L, Han X, et al. Journal of Power Sources, 2014, 259, 203.
19 Encinas N, Angulo M, Astorga C, et al. Acta Biomaterialia, 2019, 84, 317.
20 陈凯玲, 赵蕴慧, 袁晓燕.化学进展, 2013, 25(1), 95.
21 刘健, 杨启华, 张磊, 等.化学进展, 2005, 17(5), 809.
22 Lee Y G, Park J H, Oh C,et al. Langmuir, 2007, 23(22), 10875.
23 Zhou L M, Zou H B, Wang Y, et al. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310, 1155.
24 Wang Y L, Zhu L, Guo B L, et al. New Journal of Chemistry, 2014, 38, 3853.
25 Sarafraz H, Minuchehr A, Alahyarizadeh G, et al. Scientific Reports, 2017, 7, 11675.
26 Corriu R J P, Datas L, Guari Y, et al. Chemical Communications, 2001, 8, 763.
27 Wang P Y, Zhao L, Wu R A, et al. Journal of Physical Chemistry C, 2009, 113, 1359.
28 Gunathilake C, Kadanapitiye M S, Huang S D, et al. ACS Applied Materials & Interfaces, 2015, 7, 23144.
29 Billamboz M, Banaszak E. Journal of the Iranian Chemical Society, 2019, 16, 1029.
30 Wang Y, Wang H N, Meng X S, et al. Solar Energy Materials & Solar Cells, 2014, 130, 71.
31 Kovalchuk T V, Sflhi H, Korchev A S, et al. Journal of Physical Chemistry B, 2005, 109, 13948.
32 Gao Q, Xie J F, Shao Y T, et al. Chemical Engineering Journal, 2017, 313, 197.
33 Zheng S K, Feng J W, DiVerdi J A, et al. Inorganic Chemistry, 2006, 45, 6073.
34 Sobhani S, Falatooni Z M, Honarmand M. RSC Advances, 2014, 4, 15797.
35 Wei Y Q, Zhang L X, Shen L, et al. Journal of Molecular Liquids, 2016, 221, 1231.
36 Jin Y G,Qiao S Z, da Costa J C D, et al. Advanced Functional Materials, 2007, 17, 3304.
37 Kostenko L, Kobylinska N, Khainakov S, et al. Microchim Acta, 2019, 186, 474.
38 Yin P, Chen W, Liu W, et al. Bioresource Technology, 2013, 140, 146.
39 Chen C, Shen C H, Kong G J, et al. Materials Chemistry and Physics, 2013, 140, 24.
40 Zhao Y N, Jiang Z Y, Lin D S, et al. Journal of Power Sources, 2013, 224, 28.
41 Zhao Y N, Yang H, Wu H, et al. Journal of Membrane Science, 2014, 469, 418.
42 Yuan L Y, Liu Y L, Shi W Q, et al. Dalton Transactions, 2011, 40, 7446.
43 Okabe F, Mochizuki C, Takei T, et al. Journal of the Ceramic Society of Japan, 2017, 125, 732.
44 Fetisova Y S, Dudarko O A, Bauman M, et al. Journal of Sol-Gel Science and Technology, 2018, 88, 66.
45 Liu E X, Chen L, Dai J D, et al. Journal of Molecular Liquids, 2019, 277, 786.
46 Yang P P, Liu Q, Liu J Y, et al. Journal of Hazardous Materials, 2019, 363, 248.
47 Melnyk I V, Goncharyk V P, Kozhara L I, et al. Microporous and Mesoporous Materials, 2012, 153, 171.
48 Deka J R, Liu C L, Wang T H, et al. Journal of Hazardous Materials, 2014, 278, 539.
49 Kawi S, Shen S C, Chew P L. Journal of Materials Chemistry, 2002, 12, 1582.
50 Zhang D S, Wang R J, Yang X X, et al. Reaction Kinetics Mechanisms and Catalysis, 2010, 101,455.
51 Wang R, Li Y H. Catalysis Communications, 2010, 11, 705.
52 Xu S Q, Pan D H, Wu Y F, et al. Industrial & Engineering Chemistry Research, 2019, 58, 13013.
53 Jin Y G, Qiao S Z, Xu Z P, et al. Journal of Materials Chemistry, 2009, 19(16), 2363,
54 Jin Y G, Qiao S Z, Xu Z P, et al. Journal of Physical Chemistry, 2009, 113, 3157.
55 Lou L D, Pu H T. International Journal of Hydrogen Energy, 2011, 36, 3123.
56 何晓晓, 海罗, 王柯敏, 等. 高等学校化学学报, 2009, 30(2), 283.
57 Lu J, Liong M, Zink J I, et al. Small, 2007, 3(8), 1341.
58 Menon N, Leong D T. ACS Applied Materials & Interfaces, 2016, 8, 2416.
59 Liong M, Lu J, Zink J I. ACS Nano, 2008, 2(5), 889.
60 Mumin A M, Barrett J W, Zhang J. Journal of Colloid and Interface Science, 2011, 353, 156.
[1] 金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
[2] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[3] 苏博文, 史公初, 廖亚龙, 张宇, 王伟, 郗家俊. 工业固体废弃物制备二氧化硅功能材料的研究进展[J]. 材料导报, 2021, 35(3): 3026-3032.
[4] 徐群娜, 白忠薛, 马建中. 玉米醇溶蛋白的化学改性及应用研究进展[J]. 材料导报, 2021, 35(3): 3194-3203.
[5] 张关印, 关清卿, 庙荣荣, 宁平, 何亮. 共价有机骨架材料的合成及应用[J]. 材料导报, 2021, 35(13): 13215-13226.
[6] 王博闻, 方针, 付志瑶, 胡建平, 彭永晶. 不同SiO2含量对氧化锌电阻片通流性能的影响[J]. 材料导报, 2020, 34(Z2): 52-56.
[7] 张硕. 利用纳米碳酸钙为模板制备二氧化硅空心微球[J]. 材料导报, 2020, 34(Z2): 91-94.
[8] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[9] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[10] 杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
[11] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[12] 王学凯, 王金淑, 杜玉成, 吴俊书, 腾威利, 车海冰, 靳翠鑫. 硅藻土功能化及其应用[J]. 材料导报, 2020, 34(3): 3017-3027.
[13] 王杰, 魏奎先, 马文会, 伍继君. 工业微硅粉应用及提纯研究进展[J]. 材料导报, 2020, 34(23): 23081-23087.
[14] 武伟, 董季玲, 张锦山, 范海兵, 尹坚, 刘洋, 丁皓, 曹鹏军. 功能化磁性纳米颗粒吸附废水中重金属的研究进展[J]. 材料导报, 2020, 34(17): 17124-17131.
[15] 章强, 刘洪利, 陈迎豪, 李兴建, 张宜恒. 纳米二氧化硅改性“Click”型侧链含氟聚氨酯的制备及在织物整理剂上的应用[J]. 材料导报, 2020, 34(14): 14218-14222.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed