Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 72-77    
  无机非金属及其复合材料 |
碳纳米管的吸附性能及对水中污染物的吸附:综述
张莉1,2
1 怀化学院聚乙烯醇纤维材料制备技术湖南省工程实验室,怀化 418008;
2 怀化学院化学与材料工程学院,怀化 418008
Adsorption Properties of Carbon Nanotubes and Their Adsorption Properties forPollutants in Water: a Review
ZHANG Li1,2
1 Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material,Huaihua University, Huaihua 418008, China;
2 School of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
下载:  全 文 ( PDF ) ( 5969KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米管是一种新型吸附剂,其对各种无机和有机污染物均表现出优异的吸附能力,因而引起了广泛关注。本文综述了碳纳米管的性质及其从水溶液中吸附各种有机和无机污染物的有关性质,介绍了碳纳米管作为吸附剂对水溶液中的各种污染物的预富集和固定化方面的应用,并展望了碳纳米管在吸附去除污染物领域的下一步研究趋势和动向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张莉
关键词:  碳纳米管  吸附  吸附机理  吸附容量    
Abstract: Carbon nanotubes (CNTs) are a new adsorbent with excellent adsorption capacity for various inorganic and organic pollutants, which has attracted wide attention. In this paper, the properties of carbon nanotubes and their related properties in adsorbing various organic and inorga-nic pollutants from aqueous solutions were reviewed. The application of carbon nanotubes as adsorbents in preconcentration and immobilization of various pollutants in aqueous solutions was presented. Ultimately, the trends of carbon nanotubes in adsorbing and removing pollutants was prospected.
Key words:  carbon nanotubes    adsorption    adsorption mechanism    adsorption capacity
                    发布日期:  2020-07-01
ZTFLH:  TQ424  
基金资助: 聚乙烯醇纤维材料制备技术湖南省工程实验室开放项目基金(4611/00020235)
作者简介:  张莉,女,1988年出生,硕士,研究方向为分析化学。
引用本文:    
张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
ZHANG Li. Adsorption Properties of Carbon Nanotubes and Their Adsorption Properties forPollutants in Water: a Review. Materials Reports, 2020, 34(Z1): 72-77.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/72
1 Iijima S. Nature,1991,354(6348),56.
2 Eatemadi A, Daraee H, Karimkhanloo H, et al. Nanoscale Research Letters,2014,9(1),393.
3 Zhao Y L, Stoddart J F. Accounts of Chemical Research,2009,42(8),1161.
4 Wang Q, Wang X, Chai Z, et al. Chemical Society Reviews,2013,42(23),8821.
5 Ibrahim K S. Carbon letters,2013,14(3),131.
6 Gupta V K, Kumar R, Nayak A, et al. Advances in Colloid and Interface Science,2013,193,24.
7 Gu Y, Yang M, Wang W, et al. Journal of Chemical & Engineering Data, DOI:10.1021/acs.jced.9b00214.
8 Ren X, Chen C, Nagatsu M, et al. Chemical Engineering Journal,2011,170(2),395.
9 Gupta V K, Agarwal S, Saleh T A. Water Research,2011,45(6),2207.
10 Gupta V K, Saleh T A. Environmental Science And Pollution Research,2013,20(5),2828.
11 Ji L, Chen W, Duan L, et al. Environmental Science & Technology,2009,43(7),2322.
12 Wang S, Gong W, Liu X, et al. Separation and Purification Technology,2007,58(1),17.
13 Ramasamy D L, Puhakka V, Doshi B, et al. Chemical Engineering Journal,2019,365,291.
14 Agnihotri S, Mota J P B, Rostamabadi M, et al. Journal of Physical Chemistry B,2006,110(15),7640.
15 Babaa M, Dupontpavlovsky N, Mcrae E, et al. Carbon,2004,42(8),1549.
16 Agnihotri S, Mota J P B, Rostamabadi M, et al. Carbon,2006,44(12),2376.
17 And J T B, Calbi M M. Journal of Physical Chemistry C,2007,111(13),5057.
18 Babaa M, Stepanek I, Masenellivarlot K, et al. Surface Science,2003,531(1),86.
19 Schierz A, Zanker H. Environmental Pollution,2009,157(4),1088.
20 Salam M A. Arabian Journal of Chemistry,2012,5(3),291.
21 Liu L V, Tian W Q, Wang Y A. Journal of Physical Chemistry B,2006,110(26),13037.
22 Tsang S C, Harris P J F, Green M L H. Nature,1993,362(6420),520.
23 Gonzalez V J, Vegadiaz S M, Morelosgomez A, et al. Carbon,2018,139,1027.
24 Lee K M, Ko Y G, Shin D H. Materials Letters,2011,65(14),2269.
25 Koh A L, Gidcumb E, Zhou O, et al. Nano Letters,2016,16(2),856.
26 Wang H, Zhou A, Peng F, et al. Journal of Colloid and Interface Science,2007,316(2),277.
27 Zhang Z, Pfefferle L D, Haller G L. Catalysis Today,2015,249,23.
28 Chen G, Shan X, Wang Y, et al. Environmental Science & Technology,2008,42(22),8297.
29 Huang W, Zhang X B, Tu J P, et al. Materials Chemistry and Physics,2003,78(1),144.
30 Durgun E, Jang Y R, Ciraci S. Physical Review B,2007,76(7),73413.
31 Wang L, Zhu D, Chen J, et al. Environmental Science Nano,2017,4(3),558.
32 Ayala P, Arenal R, Rummeli M H, et al. Carbon,2010,48(3),575.
33 Liu S, Li G, Gao Y, et al. Catalysis Science & Technology,2017,7(18),4007.
34 Sharafeldin I M, Allam N K. New Journal of Chemistry,2017,41(24),14936.
35 Ni M, Huang L, Guo L, et al. International Journal of Hydrogen Energy,2010,35(8),3546.
36 Chun K Y, Lee C J. Journal of Physical Chemistry C,2008,112(12),4492.
37 Zhao Y, Wei J, Vajtai R, et al. Scientific Reports,2011,1(1),83.
38 Li Y, Hung T, Chen C. Carbon,2009,47(3),850.
39 Zhou Z, Gao X, Yan J, et al. Carbon,2006,44(5),939.
40 Stafiej A, Pyrzynska K. Separation and Purification Technology,2007,58(1),49.
41 Sitko R, Turek E, Zawisza B, et al. Dalton Transactions,2013,42(16),5682.
42 Nayak M C, Isloor A M, Lakshmi B, et al. Arabian Journal of Chemistry,DOI:10.1016/j.arabjc.2019.10.007.
43 Dou J, Gan D, Huang Q, et al. International Journal of Biological Macromolecules,DOI:10.1016/j.ijbiomac.2019.06.112.
44 Lu C, Liu C, Rao G P. Journal of Hazardous Materials,2008,151(1),239.
45 Li Y, Di Z, Ding J, et al. Water Research,2005,39(4),605.
46 Rao G P, Lu C, Su F. Separation and Purification Technology,2007,58(1),224.
47 Li Y, Ding J, Luan Z, et al. Carbon,2003,41(14),2787.
48 Taghizadeh M, Asgharinezhad A A, Samkhaniany N, et al. Mikrochimica Acta,2014,181,597.
49 Zhou Y, He Y, Xiang Y, et al. Science of the Total Environment,2019,646,29.
50 Gao Z, Bandosz T J, Zhao Z, et al. Journal of Hazardous Materials,2009,167(1),357.
51 Rodrigues E, Almeida O, Brasil H, et al. Applied Clay Science,2019,172,57.
52 Kandah M, Meunier J. Journal of Hazardous Materials,2007,146(1),283.
53 Erdem M, Ucar S, Karagoz S, et al. The Scientific World Journal,DOI: 10.1155/2013/146092.
54 Kabbashi N A, Atieh M A, Almamun A, et al. Journal of Environmental Sciences-China,2009,21(4),539.
55 Chen C, Hu J, Xu D, et al. Journal of Colloid and Interface Science,2008,323(1),33.
56 Silva W M D, Ribeiro H F L, Seara L M, et al. Journal of the Brazilian Chemical Society,2012,23(6),1078.
57 Li Y, Zhu Y, Zhao Y, et al. Diamond and Related Materials,2006,15(1),90.
58 Gao Z, Bandosz T J, Zhao Z, et al. Langmuir,2008,24(20),11701.
59 Sun H, La P, Zhu Z, et al. Journal of Materials Science,2014,49(20),6855.
60 Salipira K L, Mamba B B, Krause R W, et al. Environmental Chemistry Letters,2007,5(1),13.
61 Li H, Wei C, Zhang D, et al. Science of the Total Environment,2019,655,807.
62 Ye C, Gong Q, Lu F, et al. Separation and Purification Technology,2007,58(1),2.
63 Noorimotlagh Z, Mirzaee S A, Martinez S S, et al. Chemical Engineering Research and Design,2019,141,290.
64 Deng Y, Ok Y S, Mohan D, et al. Environmental Research,2019,169,434.
65 Liao Q, Sun J, Gao L. Carbon,2008,46(3),553.
66 Li H, Zheng N, Liang N, et al. Chemosphere,2016,154,258.
67 Akinpelu A A, Ali M E, Johan M R, et al. Journal of Molecular Liquids,2019,111107.
68 Pan B, Xing B. Environmental Science & Technology,2008,42(24),9005.
69 Liu Y, Zhang J, Chen X, et al. RSC Advances,2014,4(101),58036.
70 Buffa A, Mandler D. Chemical Engineering Journal,2019,359,130.
71 Tournus F, Latil S, Heggie M I, et al. Physical Review B,2005,72(7),075431.
72 Woods L M, Badescu S C, Reinecke T L. Physical Review B,DOI:10.1103/PhysRevB.75.155415.
73 Lin D, Xing B. Environmental Science & Technology,2008,42(16),5917.
74 Yang K, Xing B. Chemical Reviews,2010,110(10),5989.
75 Chen W, Duan L, Zhu D. Environmental Science & Technology,2007,41(24),8295.
76 Deng S, Bei Y, Lu X, et al. Frontiers of Environmental Science & Engineering in China,2015,9(5),784.
77 Boukhalfa N, Boutahala M, Djebri N, et al. International Journal of Biological Macromolecules,2019,123,539.
78 Shen X, Wang X, Tao S, et al. Environmental Science and Pollution Research,2014,21(20),11979.
79 Yang K, Wang X, Zhu L, et al. Environmental Science & Technology,2006,40(18),5804.
80 Lawal I A, Lawal M M, Azeez M A, et al. Journal of Molecular Liquids,DOI:10.1016/j.molliq.2019.110895.
[1] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[2] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[3] 周文娟, 谢谦, 赵磊. 再生微粉对聚羧酸减水剂的吸附性能研究[J]. 材料导报, 2020, 34(Z1): 246-248.
[4] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[5] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[6] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[7] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[8] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[9] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[10] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[11] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[12] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[13] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[14] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[15] 张筱烨, 孙赫宇, 何洋, 李健健, 冯霞, 赵义平, 陈莉. PVDF/PAMAM复合膜的制备及对铜离子的吸附性能[J]. 材料导报, 2020, 34(4): 4142-4147.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed