Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 66-71    
  无机非金属及其复合材料 |
非金属超疏水纳米涂层技术的研究进展
王永红1,2, 杨倩倩2, 刘辰2, 刘会斌2, 林晨3, 肖鹏飞3, 巩凌峰3
1 国网内蒙古东部电力有限公司,呼和浩特 010010;
2 国网内蒙古东部电力有限公司电力科学研究院,呼和浩特 010020;
3 北京易净星科技有限公司,北京 100000
A Review on Recent Researches of Nonmetal Superhydrophobic Nano-coatings
WANG Yonghong1,2, YANG Qianqian2, LIU Chen2, LIU Huibin2, LIN Chen3, XIAO Pengfei3, GONG Lingfeng3
1 East Inner Mongolia Electric Power Co., Ltd., Hohhot 010010, China;
2 Electric Power Research Institute of East Inner Mongolia Electric Power Co., Ltd., Hohhot 010010, China;
3 Beijing Neatrition Technology Co., Ltd., Beijing 100000, China
下载:  全 文 ( PDF ) ( 6025KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 设备表面防水、防冰、防雾的需求在工业生产中随处可见,在其表面喷覆超疏水涂层是针对此类需求的有效解决方法。超疏水涂层的疏水性由材料表面的表面能和微纳粗糙结构两个因素决定,构筑超疏水涂层主要包括降低材料的表面能和改变微观结构两个方面。本文综述了国内外主要的非金属纳米材料,如石墨烯、二氧化硅、二氧化钛等制备超疏水涂层的方法,评价了不同纳米材料的适用范围。这类材料自身尺度是纳米级,易于构筑微纳粗糙结构和通过化学改性引入非极性共价官能团,降低材料的表面能。通过氧化还原、表面改性等方法引入疏水基团,通过自组装法、凝胶法、模板法、刻蚀法等进行结构组装,可制备接触角大于150°、滚动角小于5°的超疏水表面。分析了能够与纳米材料通过共价或非共价结合组成复合超疏水涂层的聚合物,增强涂层在力学、热学等方面的性能,扩展其应用范围。总结了近些年来在非金属超疏水纳米涂层领域的最新技术和进展,介绍了不同种类的纳米材料构筑超疏水表面的方法及其应用,为超疏水涂层的规模化生产提供可行的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王永红
杨倩倩
刘辰
刘会斌
林晨
肖鹏飞
巩凌峰
关键词:  超疏水  纳米材料  低表面能  微纳结构  石墨烯  二氧化硅    
Abstract: The worldwide coating industries and scientific communities have paid much attention on superhydrophobic coatings for the requirements of anti-water, anti-ice and anti-fog. Superhydrophobicity is mainly due to the low surface energy and the micro-nano structure of the coating materials. These two features can be achieved on many nanomaterials by chemical modification and physical assembly. Nonmetal nanomaterials, such as graphene, silicon dioxide and titanium dioxide, are potential candidates for fabricating superhydrophobic coatings with high contact angle (>150°) and low sliding angle (<5°). These materials can be easily chemically modified and physically assembled. This review attempts to highlight the technical development and breakthrough in superhydrophobic coatings made of nonmetal nanomaterials in different fields. Recent developments in superhydrophobic coatings through nanotechnology are provided. Both preparation strategies and their distinctive properties are revealed. To prepare superhydrophobic coatings, polymers are usually used with nanomaterials, for their various structures and applications. Several important methods and examples in designing stable and self-cleanable superhydrophobic surface by nonmetal nanomaterials with frequently used polymers are discussed. This review provides various approaches to prepare superhydrophobic nonmetal nanomaterials, which could be promising solutions for the large scale production of superhydrophobic coatings.
Key words:  superhydrophobicity    nanomaterial    low surface energy    micro-nano structure    graphene    SiO2
                    发布日期:  2020-07-01
ZTFLH:  O6-1  
作者简介:  林晨,2017年1月毕业于清华大学化工系,获得工程博士学位。于2017年9月加入北京易净星科技有限公司,担任研发总监一职,主要从事纳米超疏水材料、超亲水材料、超硬材料领域的研究。
引用本文:    
王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
WANG Yonghong, YANG Qianqian, LIU Chen, LIU Huibin, LIN Chen, XIAO Pengfei, GONG Lingfeng. A Review on Recent Researches of Nonmetal Superhydrophobic Nano-coatings. Materials Reports, 2020, 34(Z1): 66-71.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/66
1 Chen Y, Chen S, Yu F, et al. Surface and Interface Analysis,2009,41,872.
2 Mo C, Zheng Y, Wang F, et al. International Journal of Electrochemical Science,2015,10,7380.
3 Wei Y, Liu H T, Zhu W. RSC Advances,2015,5,103000.
4 Isimjan T T, Wang T, Rohani S. Chemical Engineering Journal,2012,210,182.
5 Peng C, Xing S, Yuan Z, et al. Applied Surface Science,2012,259,764.
6 Boinovich L B, Emelyanenko A M. Mendeleev Communications,2013,23,3.
7 Li J, Zhao Y, Hu J, et al. Journal of Adhesion Science and Technology,2012,26,665.
8 Howarter J A, Youngblood J P. Advanced Materials,2007,19,3838.
9 Gan W Y, Lam S W, Chiang K, et al. Journal of Materials Chemistry,2007,17,952.
10 England M W, Urata C, Dunderdale G J, et al. ACS Applied Materials and Interfaces,2016,8,4318.
11 Latthe S S, Terashima C, Nakata K, et al. Journal of Materials Chemistry A,2014,2,5548.
12 Ganesh V A, Raut H K, Nair A S, et al. Journal of Materials Chemistry,2011,21,16304.
13 Nakajima A, Hashimoto K, Watanabe T, et al. Langmuir,2000,16,7044.
14 Hellio C, Yebra D. Advances in marine antifouling coatings and technologies, Woodheads Publishing Elsevier, UK,2009.
15 Banerjee I, Pangule R C, Kane R. S. Advanced Materials,2011,23,690.
16 Chambers L D, Stokes K R, Walsh F C, et al. Surface and Coatings Technology,2006,201,3642.
17 Song Y Y, Schmidt-Stein F, Berger S, et al. Small,2010,6,1180.
18 Wenzel R N. Industrial and Engineering Chemistry Research,1936,28,988.
19 Wenzel R N. The Journal of Physical Chemistry,1949,53,1466.
20 Cassie A B D, Baxter S. Transactions of the Faraday Society,1944,40,546.
21 Neinhuis C, Barthlott W.Annals of Botany,1997,79,667.
22 Onda T, Shibuichi S, Satoh N, et al.Langmuir,1996,12,2125.
23 Sonalee D, Sudheer K, Sushanta K S, et al. Industrial and Engineering Chemistry Research,2018,57,2727.
24 Shang H M, Wang Y, Limmer S J, et al. Thin Solid Films,2005,472,37.
25 Bravo J, Zhai L, Wu Z, et al. Langmuir,2007,23,7293.
26 Lai Y, Tang Y, Gong J, et al. Journal of Materials Chemistry,2012,22,7420.
27 Zhang X, Jin M, Liu Z, et al. Langmuir,2006,22,9477.
28 Wu X, Zheng L, Wu D. Langmuir,2005,21,2665.
29 Chakradhar R P S, Kumar V D, Rao J L, et al. Applied Surface Science,2011,257,8569.
30 Si Y, Guo Z. Nanoscale,2015,714,5922.
31 Cao L, Jones A K, Sikka V K, et al. Langmuir,2009,25,12444.
32 Zhang L, Li Y, Sun J, et al. Langmuir,2008,24,10851.
33 Tricoli A, Righettoni M, Pratsinis S E. Langmuir,2009,25,12578.
34 Faustini M, Nicole L, Boissiere C, et al. Chemistry of Materials,2010,22,4406.
35 Tahk D, Kim T I, Yoon H, et al. Langmuir,2010,26,2240.
36 Nuraje N, Asmatulu R, Cohen R E, et al. Langmuir,2010,27,782.
37 Gu J, Xiao P, Chen J, et al. Journal of Materials Chemistry A,2014,2,15268.
38 Zhu X, Zhang Z, Ge B, et al. Colloids and Surface A: Physicochemical Eng and Engineering Aspects,2014,444,252.
39 Francesco D N, Castrucci P, Scarselli M, et al. Nanotechnology,2015,26,145701.
40 Lin C, Liu Y T, Xie X M.Australian Journal of Chemistry,2014,67,121.
41 Novoselov K S, Geim A K, Morozov S V, et al.Science,2004,306,666.
42 Nair R, Blake P, Grigorenko A, et al.Science,2008,320,1308.
43 Ziegler K.Physical Review B,2007,75,233407.
44 Lin Y, Ehlert G J, Bukowsky C, et al. ACS Applied Materials and Interfaces,2011,3,2200.
45 Yang Z, Wang L, Sun W, et al. Applied Surface Science,2017,401,146.
46 Cao D, Zhang Y, Li Y, et al. Materials Science and Engineering,2017,78,333.
47 Zhang L, Xue C H, Cao M, et al. Chemical Engineering Journal,2017,320,244.
48 Chen J, Zhang L, Zeng Z, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,509,149.
49 Jiang C, Zhang Y, Wang Q, et al. Journal of Applied Polymer Science,2013,129,2959.
50 Xu Q F, Liu Y, Lin F J, et al. ACS Applied Materials and Interfaces,2013,5,8915.
51 Holtzinger C, Niparte B, Wächter S, et al. Surface Science,2013,617,141.
52 Wang C F, Tzeng F S, Chen H G, et al. Langmuir,2012,28,10015.
53 Zhang J, Pu G, Severtson S J. ACS Applied Materials and Interfaces,2010,2,2880.
54 Liu K, Jiang L. ACS Nano,2011,5,6786.
55 Liu K, Jiang L. Nano Today,2011,6,155.
56 Parkin I P, Palgrave R G. Journal of Materials Chemistry,2005,15,1689.
57 Blossey R. Nature Materials,2003,2,301.
58 Liu K, Yao X, Jiang L. Chemical Society Review,2010,39,3240.
59 Liu K, Jiang L. Nanoscale,2011,3,825.
60 Ishizaki T, Masuda Y, Sakamoto M. Langmuir,2011,27,4780.
61 Ishizaki T, Hieda J, Saito N, et al. Electrochimica Acta,2010,55,7094.
62 Ishizaki T, Saito N. Langmuir,2010,26,9749.
63 Xu W, Song J, Sun J, et al. ACS Applied Materials & Interfaces,2011,3,4404.
64 Meuler A J, Mckinley G H, Cohen R E. ACS Nano,2010,4,7048.
65 Cao L, Jones A K, Sikka V K, et al. Langmuir,2009,25,12444.
66 Tourkine P, Le Merrer M, Quere D. Langmuir,2009,25,7214.
67 Zhang L, Li Y, Sun J, et al. Langmuir,2008,24,10851.
68 Tricoli A, Righettoni M, Pratsinis S E. Langmuir,2009,2,12578.
69 Faustini M, Nicole L, Boissiere C, et al. Chemist of Materials,2010,22,4406.
70 Lee D, Rubner M F, Cohen R E. Nano Letters,2006,6,2305.
71 Gan W Y, Lam S W, Chiang K, et al. Journal of Materials Chemistry,2007,17,952.
72 Tahk D, Kim T I, Yoon H, et al. Langmuir,2010,26,2240.
73 Nuraje N, Asmatulu R, Cohen R E, et al. Langmuir,2011,27,782.
74 Gao X, Yan X, Yao X, et al. Advanced Materials,2007,19,2213.
75 Rascio V J. Corrosion Reviews,2000,18,133.
76 Champ M A. Science of the Total Environment,2000,258,21.
77 Abbott A, Abel P D, Arnold D W, et al. Science of the Total Environment,2000,258,5.
78 Junaidi M U M, Azaman S H, Ahmad N N R, et al. Progress in Organic Coatings,2017,111,29.
79 Zhang W F, Lu X, Xin Z, et al. RSC Advances,2015,5,55513.
80 Dong Z Q, Wang B J, Liu M, et al. RSC Advances,2016,6,65171.
[1] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[2] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[3] 张超, 张利, 刘兴华, 陈琳, 杨永珍, 于世平. 碳纳米材料的抗菌性及在生物医学中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 53-57.
[4] 莫若飞, 杨玉婷, 潘可, 赵立春. 石墨烯及其衍生物在中医药领域中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 58-62.
[5] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[6] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[7] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[8] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[9] 杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
[10] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[11] 程正富, 周明军, 杨邦朝, 郑瑞伦. 石墨烯热学性能非简谐效应的研究进展[J]. 材料导报, 2020, 34(9): 9095-9100.
[12] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[13] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[14] 赖宇明, 高雅, 要秀全. 纳米尺度自组装相互作用力研究进展[J]. 材料导报, 2020, 34(7): 7091-7098.
[15] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed