Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 249-254    
  无机非金属及其复合材料 |
蒙脱土剥离方法的研究进展
刘仁杰, 李三喜, 王松, 张爱玲
沈阳工业大学理学院,沈阳 110870
Recent Advances in Exfoliating Method of Montmorillonite
LIU Renjie, LI Sanxi, WANG Song, ZHANG Ailing
School of Sciences, Shenyang University of Technology, Shenyang 110870, China
下载:  全 文 ( PDF ) ( 7679KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 蒙脱土作为膨润土的主要成分,因其低廉的价格和丰富的资源受到广泛关注。蒙脱土是典型的2∶1型层状硅酸盐纳米材料,具有阳离子可交换性、强吸附性、亲水膨胀性等优良的特性。剥离蒙脱土因其物理、化学、电学、催化和力学等性能的显著提高而受到人们的广泛关注。蒙脱土层与层之间由范德华力和静电引力连接。剥离蒙脱土的过程是层间力逐渐减小甚至消除的过程。目前蒙脱土主要的剥离方法按照剥离形式不同可分为物理剥离法、化学剥离法和物理-化学剥离法。蒙脱土剥离方法研究热点主要集中在两个方面:一方面,寻求高效且不易破坏长径比的物理方法成为研究热点。目前的物理剥离法主要是利用机械力剪切蒙脱土片层,机械力的方向是无序的,成功剥离的同时剪切片层导致片层被破坏。由于物理法操作简单,成本低廉,寻求一种高效且不破坏片层大小的物理剥离方法成为新的研究热点。另一方面,利用物理剥离法和化学剥离法的有效结合成为研究热点。物理剥离法操作简单,成本低廉,但不能保证片层的完整性;化学剥离法效果显著但过程中大量有机试剂的引入不符合环境友好的原则。将两种方法有效结合,充分利用两种剥离方法中的优势,能够达到更好的剥离效果。本文从物理剥离法、化学剥离法和物理-化学剥离法三种不同的剥离方法出发,综述了近几年蒙脱土剥离方法的研究进展,并对蒙脱土剥离方法的研究热点和研究趋势进行了分析和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘仁杰
李三喜
王松
张爱玲
关键词:  蒙脱土  剥离  阳离子可交换性  表面活性剂  长径比    
Abstract: Montmorillonite is widely concerned because of its low price and rich resources as the constituent of bentonite. Montmorillonite is a typical 2∶1 layered silicate mineral. It has good characteristics such as cation exchangeability, strong adsorption, hydrophilic expansion and. Howe-ver, exfoliated montmorillonite has been paid more attention because of its remarkable improvement in physical, chemical, electrical, catalytic and mechanical properties. The montmorillonite layers are connected by van der Waals forces and electrostatic forces. The process of exfoliation is a process in which the interlaminar forces is gradually reduced or even eliminated. At present, the main exfoliating methods of montmorillonite can be divided into physical exfoliating method, chemical exfoliating method and physical-chemical exfoliating method according to different exfo-liated forms. The research focuses on two aspects. On the one hand, it has become a research issues to find an efficient physical method which is destroy the aspect ratio. At present, the physical exfoliating method destroys the nanosheets through mechanical forces. The direction of mechanical force is disordered, and the sheet layer is destroyed when it is successfully exfoliated. Due to the simple operation and low cost of physical exfoliating method, it has become a new research hotspot to find an efficient and non-destructive physical exfoliating method. On the other hand, the effective combination of physical method and chemical method has become a research hotspot. Physical exfoliation method has simple operation and low cost, but it can not guarantee the integrity of the nanosheets; chemical exfoliating method has significant effect, but the large number of organic reagents in the process is a contradiction of the principle of environmental friendliness. Making full use of the advantages and combining the two methods effectively can achieve better stripping effect. In this paper, the research progress of montmorillonite exfoliating met-hods in recent years is reviewed, and the research hotspot and trend of montmorillonite exfoliating methods are analyzed and prospected.
Key words:  montmorillonite    exfoliation    cation exchangeability    surfactant    aspect ratio
                    发布日期:  2020-07-01
ZTFLH:  TQ050.4+21  
基金资助: 辽宁省聚合物催化合成技术重点实验室专项基金项目(2010-36);沈阳市科技计划项目(F15-199-1-12)
作者简介:  刘仁杰,2018年6月毕业于河南理工大学,获得工学学士学位。现为沈阳工业大学理学院硕士研究生,在李三喜教授的指导下进行研究。目前主要研究领域为蒙脱土剥离方法;李三喜,沈阳工业大学教授、博士研究生导师。1983年7月本科毕业于中山大学化学系,1989年毕业于中国科学院长春应用化学研究所,取得理学博士学位,1991—1994年在意大利米兰大分子化学研究所进行博士后研究工作。1999年被选为辽宁省“百千万人才工程”百人层次人选。2000年获辽宁省政府科技进步一等奖和国务院政府特殊津贴,长期从事烯烃催化聚合、精细化学品的合成、无机非金属材料及有机/无机复合材料的制备、资源综合利用等方面的研究工作,主持完成和承担了20多项重大攻关课题和企业横向课题的研究工作,已在国内外学术刊物上发表研究论文100余篇,申请专利20余项。
引用本文:    
刘仁杰, 李三喜, 王松, 张爱玲. 蒙脱土剥离方法的研究进展[J]. 材料导报, 2020, 34(Z1): 249-254.
LIU Renjie, LI Sanxi, WANG Song, ZHANG Ailing. Recent Advances in Exfoliating Method of Montmorillonite. Materials Reports, 2020, 34(Z1): 249-254.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/249
1 Zhu T T, Zhou C H, Kabwe F B,et al.Applied Clay Science,2019,169,48.
2 Zhao L Z, Zhou C H, Wang J, et al. Soft Matter,2015,11(48),9229.
3 Varadwaj G B B, Parida K M.RSC Advances,2013,3(33),13583.
4 Tan C L, Gao X H, Wu X J,et al. Chemical Reviews,2017,117,6225.
5 Wang W T, Song P L, Wang R, et al. Industrial Crops & Products,2018,117,333.
6 Chivrac F, Pollet E, Dole P, et al. Carbohydrate Polymers,2010,79(4),941.
7 Zheng Y, Zaoui A.Physica A-Statistical Mechanics and Its Applications,2018,505,582.
8 Ali S, Bandyopadhyay R.Applied Clay Science,2015,114(1),85.
9 Osman A F, Fitri T, Rankibuddin M,et al. Materials Science & Enginee-ring C-Materials for Biological Applications,2017,74,194.
10 Zarei A, Jalali-Arani A. Advances in Polymer Technology,2018,37,1469.
11 Chen T X, Yang Y M, Zhao Y L, et al. RSC Advances,2018,8(71),40823.
12 Li H L, Song S X, Dong X S, et al. Jom,2018,70(4),479.
13 Behnsen J, Faulkner D R.Solid Earth,2013,118(6),2788.
14 Akinwunmi B, Hirvi J T, Kasa S, et al. Chemical Physics, DOI:202010.1016/j.chemphys.2019.110511.
15 Dar B A, Shrivastava V, Bowmik A, et al.Tetrahedron Letters,2015,56(1),136.
16 Hu Z Y, Zhang P, Xie R S, et al.Journal of Materials Science,2018,53(23),15859.
17 刘梦.蒙脱石剥离插层机理研究及荧光功能新材料的构建.硕士学位论文,中国地质大学,2018.
18 Yuhana N Y, Ahmad S, Bahri A R S.Advances in Materials Science and Engineering,2012,DOI:10.1155/2012/789815.
19 Ge X, Zhang Z J, Yu H T, et al. Applied Clay Science,2018,157,274.
20 Zhang J H, Wang H, Zao W T, et al.Polymer International,2019,68(9),1618.
21 Richert V, Quinzani L M, Failla M D.Journal of Applied Aolymer Science,2018,135(6),45840.
22 Istrate O M, Chen B Q.Applied Clay Science,2018,156,144.
23 Cao T, Fasulo P D, Rodgers W R.Applied Clay Science,2010,49,21.
24 Wu T, Tong Y R, Qiu F, et al.Polymers for Advanced Technologies,2018,29(1),41.
25 Xia M S, Jiang Y S, Zhao L, et al.Colloids and Surfaces A: Physicoche-mical and Engineering Aspects,2010,356,1.
26 Lapides I, Yariv S.Journal of Materials Science,2004,39(16),5209.
27 Singh V, Venugopal R, Saxena V K, et al.Minerals & Metallurgical Processing,2016,33(2),88.
28 Chatterjee U, Butola B S, Joshi M.Applied Clay Science,2017,140,10.
29 Zhuang G S, Zhang Z P, Guo J S, et al. Applied Clay Science,2015,104(104),18-26.
30 Ramadan A R, Esawi A M K, Gawad A A, et al.Applied Clay Science,2010,47,192.
31 Wang L, Yin X C, He G J, et al. Journal of Thermoplastic Composite Materials,2018,31(6),784.
32 Prodo B R, Bartoli J R.Applied Clay Science,2018,160,132.
33 Li M, Guo Q G, Nutt S.Solar Energy,2017,146,1.
34 Darvishi Z, Morsali A.Ultrasonics Sonochemistry,2011,18(1),238.
35 Chen T X, Yuan Y, Zhao Y L, et al. Langmuir,2019,25(6),2368.
36 Thompson M R, Zhuang Z, Liu J, et al. Polymer Engineering and Science,2012,52(10),2049.
37 Salavati H, Tangestaninejad S, Moghadam M, et al.Ultrasonics Sonochemistry,2009,17(1),145.
38 Jisr R M, Rmaile H H, Schlenoff J B.Angewandte Chemie(German Edition),2005,44(5),782.
39 Lin J J, Cheng I J, Wang R, et al. Macromolecules,2001,34(26),8832.
40 Tiwari P, Ranjan R, Das K, et al. Polymer Bulletin, DOI:10.1007/s00289-019-03019-z.
41 Gan M K, Xiao T L, Liu Z Y, et al.RSC Advances,2019,9(22),12325.
42 Monteiro M K S, de Oliveira V R L, dos Santos F K G, et al.Journal of Molecular Liquids,2018,266,770.
43 Zhuang G S, Zhang H X, Wu H, et al.Applied Clay Science,2016,135,244.
44 Bai H Y, Zhao Y L, Zhang X, et al. Journal of the American Ceramic Society,2019,102(7),3908.
45 He H P, Ma Y H, Zhu J X, et al.Applied Clay Science,2010,48,67.
46 Hojiyev R, Ulcay Y, Celik M S, et al.Applied Clay Science,2017,141,204.
47 Wang S Q, Zhang Z P, Wang Y H, et al. Materials Research Bulletin,2014,59,59.
48 Chen T X, Zhao Y L, Song S X.Colloids and Surfaces A-Physicochemical and Engineering Aspects,2017,525,1.
49 Li S J, Xu Z H, Xu J M, et al.Journal of Composite Materials,2019,53(3),315.
50 Bhatia M, Rajulapati S B, Sonawane S, et al. Scientific Reports,2017,7(1),16413.
51 Li W Z, Dong H P, Wang L D, et al. Journal of Materials Chemistry A,2014,2(33),13587.
52 尹晓刚,王野,龚维,等.塑料工业,2016,44(5),117.
53 Varadwaj G B B, Parida K, Nyamori V O.Inorganic Chemistry Frontiers,2016,3(9),1100.
54 Bujdakova H, Bujdakova V, Majekova-Koscova H, et al.Applied Clay Science,2018,158,21.
55 Chu C C, Chiang M L, Tsai C M, et al. Macromolecules,2005,38,6240.
56 Block K A, Trusiak A, Katz A, et al.Applied Clay Science,2015,107,173.
57 Yu C C, Ke Y C, Deng Q C, et al. Applied Sciences-Basel,2018,8(6),964.
58 Zare Y, Rhee K Y.Applied Clay Science,2017,150,42.
59 Zicans J, Maksimov R D, Plume E, et al.Composite Structures,2017,183,483.
60 Jia F F, Song S X. World Scientific,2014,21(2),1.
61 Meng N, Zhou N L.Carbohydrate Polymers,2014,105,70.
62 Moskova D J, Janigova I, Nogellova Z,et al. Polymer Testing,2018,69,359.
63 Koc O P, Acar S B, Uyar T, et al.Polymer Bulletin,2018,75(11),4901.
64 Briesenick D, Bremser W.Progress in Organic Coatings,2015,82,26.
65 Mederic P, Fneich F, Ville J, et al. Applied Clay Science,2018,165,257.
66 翟辉,李三喜,赵效忠.精细石油化工,2006(5),22.
67 Luo W H, Fukumori T, Guo B L, et al.Applied Clay Science,2017,146,325.
68 Dhirde P G, Chada V G R, Mallik B P, et al. Polymer Composites,2018,39,2922.
69 Vermisoglou E C, Giannakopoulou T, Todorova N,et al. Journal of Nanoscience and Nanotechnology,2018,18(11),7797.
70 Lin J J, Chu C C, Chiang M L, et al.Atencion Primaria,2006,7(4),327.
71 Lei F, Yang S, Yang M T. Polymer Bulletin,2014,71(12),3261.
[1] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[2] 包朝玲, 陈秀琼, 雷梦圆, 柯超然, 张威, 颜慧琼, 林强. 基于湿法球磨改性蒙脱土构建可负载疏水药物的海藻酸盐/有机蒙脱土复合凝胶微球及其释药性[J]. 材料导报, 2020, 34(10): 10171-10176.
[3] 王倩,高能,张天垚,姚光,潘泰松,高敏,林媛. 氧化物功能薄膜器件的柔性化策略[J]. 材料导报, 2020, 34(1): 1014-1021.
[4] 杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[5] 游敏, 李明波, 袁有录, 林高, 余海洲. 胶粘剂冲击性能测试方法研究现状[J]. 材料导报, 2019, 33(Z2): 210-214.
[6] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[7] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[8] 武海良, 杨倩, 张希文, 沈艳琴, 姚一军. EVA基纺织品用热熔胶的形成:组分含量和参数调控[J]. 材料导报, 2019, 33(6): 1070-1073.
[9] 张理元, 由耀辉, 刘义武, 阮尚全. 无机沉淀胶溶法制备钛锂离子筛及其吸附性能研究[J]. 材料导报, 2019, 33(24): 4056-4061.
[10] 鲍艳, 刘盼, 郭佳佳. 利用双子表面活性剂辅助制备纳米材料和介孔材料的研究进展[J]. 材料导报, 2019, 33(21): 3678-3685.
[11] 吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
[12] 王佳员, 王运, 杜保保, 王吟, 张晓东. 镁改性蒙脱土/纤维素复合凝胶的制备及对磷酸盐的吸附性能[J]. 材料导报, 2019, 33(12): 2076-2083.
[13] 王静, 李坚, 汪剑辉, 郑力, 李浪涛. 用于混凝土表面放射性沾染清除的剥离型膜材料研究[J]. 材料导报, 2018, 32(20): 3673-3676.
[14] 郭妍婷, 黄雪, 尹垚骐, 陈曼, 冯光炷. 蒙脱土增强二聚酸改性不饱和聚酯树脂的制备及性能[J]. 材料导报, 2018, 32(18): 3249-3254.
[15] 祁帅, 黄国强. 超声波辅助二元溶剂剥离制备石墨烯*[J]. CLDB, 2017, 31(9): 72-76.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed